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The metabolic changes that effect fruit
quality during tomato fruit ripening
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Abstract

As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality
formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by
metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In
recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots
of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been
identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here,
both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-
translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network
analysis of representative genes of fruit quality has been carried out and the potential of the combined application of
the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel
candidate genes determinants of fruit quality is discussed.
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Introduction
Following import from the Andean region to Europe in
the 16th century and human domestication and breeding
for around 600 years, tomato has become one of the
most economically important vegetables in the world
(Bergougnoux 2014). In 2019, the worldwide cultivated
area of tomato reached almost 6.11 million hectares pro-
ducing 243.62 million tons fruits which are sold either as
fresh market vegetables or made into soups, juice and
ketchup by the processing industry (FAOSTAT, http://
www.fao.org/faostat). As the most important traits for
fresh market and processing, the appearance and in-
ternal quality of fruit are formed by dramatic changes in
the activities of a series of metabolic pathways during
the ripening process. These metabolic changes are not
only attributed to the colorful and flavorsome

appearance that were initially required to attract animals
to eat and subsequently disperse seeds but also an im-
portant nutritional source of carbohydrate, minerals, vi-
tamins, and antioxidants for both animals and humans
(Klee and Giovannoni 2011). For this reason, the key
biosynthetic pathways of the fruit quality metabolites
during the ripening have been well-documented and the
genetic and molecular analysis of tomato metabolism
have been summarized in several reviews (Carrari and
Fernie 2006; Giovannoni 2007; Tohge et al. 2017). Re-
cently, the high quality tomato genome and large scale
transcriptomic datasets have significantly accelerated the
illumination of the structural genes and transcriptional
regulators underlying the formation of high quality fruit
(The Tomato Genome Sequencing Consortium 2012).
However, given that tomato specialized metabolism is
highly complex, in order to identify the novel genes in-
volved in aspects of fruit quality that are associated with
these metabolites still requires considerable research
effort.
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Here, we focus on the recently obtained knowledge
considering structural genes as well as transcriptional
and post-translational regulators involved in the meta-
bolic pathways underlying both appearance and internal
quality such as those involved in chlorophyll, carotenoid,
cell wall, central and secondary metabolism (Table 1,
Figure 1). Moreover, to mine the other potential genes
involved in fruit quality formation, we additionally car-
ried out a weighted gene correlation network analysis of
the representative genes of the fruit quality based on
previously published high-resolution spatiotemporal
transcriptome data for tomato fruit ripening (Shinozaki
et al. 2018). We additionally discuss the combined appli-
cation of gene correlation network analysis, fine-
mapping strategies and next generation sequencing as a
mean to identify the novel candidate genes underlying
fruit quality.

Pigments
As one of the most important traits of fruit appearance
quality, pigmentation alters dramatically during fruit rip-
ening process, changing following upregulation of chloro-
phyll degradation and carotenoid biosynthesis to form the
unique color of the fruit (Klee and Giovannoni 2011).
As a representative magnesium porphyrin compound,

chlorophylls contain a porphyrin ring chelating a magne-
sium atom for light energy absorption and the aliphatic
hydrocarbon side chain, phytol. The degradation of chlo-
rophylls initializes with the conversion of chlorophyll b
to chlorophyll a which is catalyzed by chlorophyll b re-
ductase (Horie et al. 2009). Subsequently, based on the
order of removing the phytol and magnesium atoms, the
chlorophyll degradation pathway is divided into the
PAO (Pheophorbide a monooxygenase) pathway and the
PPH (Pheophytin pheophorbide hydrolase) pathway. In
the PAO pathway, the phytol group is removed from
chlorophyll a which catalyzed by chlorophyllase, and
subsequently the magnesium atom chelated with the
porphyrin ring is removed as the action of magnesium
ion dechelating enzyme. For the PPH pathway, the mag-
nesium atom in the chlorophyll a porphyrin ring is re-
moved first, and then PPH specifically removes the
phytol chain of Mg-free chlorophyll (Chl) pigment pheo-
phytin to generate pheophorbide (Schelbert et al. 2009).
Then, oxygen atoms are added to the C4 and C5 of the
porphyrin ring to break the structure of the porphyrin
ring and produce red chlorophyll metabolites (Pruzinska
et al. 2003). Subsequently, the red chlorophyll metabo-
lites are converted into a primary fluorescent chlorophyll
catabolite and transported out of the chloroplast (Pru-
zinska et al. 2007). Following modification in the cytosol,
these molecules are transported to the vacuole, and fi-
nally undergo an isomerization reaction to form the final
product of Chl breakdown, nonfluorescent Chl

catabolites (Berghold et al. 2004). In addition to the
above enzymes, former research has reported that SGR
(STAY-GREEN) proteins can interact with chlorophyll
degrading enzymes to affect the degradation of chloro-
phyll. In tomato fruits, SGR1 and SGRL proteins can
promote chlorophyll degradation, while the SGR2 pro-
tein in Arabidopsis acts as a repressor of the chlorophyll
degradation (Barry et al. 2008; Sakuraba et al. 2012;
Sakuraba et al. 2014; Yang et al. 2020).
As the main pigment of ripe tomato fruit, the orderly

synthesis of carotenoids is a key step of fruit color qual-
ity. During the fruit ripening process, carotenoids are de
novo synthesized by the polymerization of isopentenyl
diphosphate to produce geranyl geranyl pyrophosphate
(GGPP). GGPP then acts as the direct precursor for syn-
thesis of various linear and epoxidized carotenoids under
the catalysis of a series of enzymes. The first reaction
which is catalyzed by phytoene synthase (PSY) synthe-
sizes the colorless phytoene from two molecules of
GGPP. This enzyme is the key rate-limiting step of ca-
rotenoid synthesis pathway and its loss-of-function un-
derlies the yellow-fruited tomato 2 mutant (Bird et al.
1991; Bartley and Scolnik 1993; Chen et al. 2019b). Sub-
sequently, under the catalysis of phytoene dehydrogen-
ase (PDS), ζ-carotene dehydrogenase (ZDS), ζ-carotene
isomerase (Z-ISO) and carotene isomerase (CRTISO),
phytoene undergoes dehydrogenation and isomerization
reactions to form lycopene, which is the dominate carot-
enoid of tomato fruit (Hirschberg 2001; Isaacson et al.
2002; Cazzonelli and Pogson 2010). Thereafter, lycopene
is converted by lycopene epsilon cyclase (LCYE) and
lycopene beta cyclase (LCYB) in the branch pathway of
carotenoid synthesis to produce α-carotene and β-
carotene (Ronen et al. 1999; Diretto et al. 2020). More-
over, α-, β-carotene can be catalyzed by β-carotene hy-
droxylase (BCH, loss-of-function which leads to tomato
white-flower mutant) and through the intermediate
products zeinoxanthin and β-cryptoxanthin form lutein
and zeaxanthin (Galpaz et al. 2006; Stigliani et al. 2011).
In addition, zeaxanthin can also generate antherxanthin
and violaxanthin following the reaction catalyzed by zea-
xanthin epoxidase (ZEP, loss-of-function which leads to
tomato high-pigment 3 mutant) (Galpaz et al. 2008; Kar-
niel et al. 2020). Finally, violaxanthin can also be con-
verted to neoxanthin under the catalysis of neoxanthin
synthase (NSY) (Neuman et al. 2014).

Cell wall
As one of the predominant parameters of fruit texture
and the major determinant of shelf life and commercial
value of fruits, cell wall remodeling during the ripening
stage is a complex process which contains the hydrolysis
of cellulose and hemicelluloses, solubilisation and de-
polymerisation of the pectin polysaccharides, and
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Table 1 Validated structure and transcriptional genes of tomato fruit quality metabolism

Metabolite
pathway or TF
famaily

Gene name Gene ID Gene function validation
method or regulation
pathway

Reference

Chlorophyll
degradation

SGR1 Solyc08g080090 Map-Based Cloning and
transgene

(Barry et al. 2008;
Luo et al. 2013)

SGRL Solyc04g063240 Transgene (Yang et al. 2020)

PPH Solyc01g088090 Transgene (Guyer et al. 2014)

Carotenoid
biosynthesis

PSY1 Solyc03g031860 Transgene (Bird et al. 1991)

PSY2 Solyc02g081330 Bacterial mutant
complementation

(Bartley and
Scolnik 1993)

CRTISO Solyc10g081650 Map-Based Cloning and
E.coli transformation

(Isaacson et al.
2002)

ZDS Solyc01g097810 Transgene (McQuinn et al.
2020)

PDS Solyc03g123760 Virus-Induced Gene
Silencing (VIGS)

(Naing et al. 2019)

LCYE Solyc12g008980 E.coli transformation (Roessner-Tunali
et al. 2003)

LCYB Solyc04g040190 Transgene (Diretto et al.
2020)

BCH2 Solyc03g007960 Map-Based Cloning and
E.coli transformation

(Galpaz et al.
2006)

ZEP Solyc02g090890 Map-Based Cloning (Galpaz et al.
2008)

NSY Solyc06g074240 E.coli transformation (Bouvier et al.
2000)

NXD Solyc12g041880 Map-Based Cloning (Neuman et al.
2014)

Cell wall
metabolism

Exp1 Solyc06g051800 Transgene (Brummell et al.
1999)

PG Solyc10g080210 Transgene (Jiang et al. 2019)

XTHs Solyc01g099630 Transgene (Miedes et al.
2010)

PL Solyc03g111690 Transgene (Yang et al. 2017)

PE1/PE2 Solyc03g123630/Solyc07g064170 Transgene (Wen et al. 2013)

TBG4 Solyc12g008840 Transgene (Smith et al. 2002)

Cel1/Cel2 Solyc08g081620/ Solyc09g010210 Transgene (Flors et al. 2007)

Xyl1/ Xyl2 Solyc11g044910/ Solyc01g079570 Transgene and enzyme
assay

(Tateishi et al.
2014)

Central
metabolism

Aco-1 Solyc12g005860 Mutant phenotype analysis (Carrari et al.
2003)

ICDH1 Solyc01g005560 Transgene (Gamrasni et al.
2020)

MDH Solyc07g062650 Transgene (Centeno et al.
2011)

SWEET15 Solyc09g074530 Transgene (Ko et al. 2020)

SUT1/SUT2 Solyc11g017010/ Solyc05g007190 Transgene (Hackel et al.
2006)

SWEET 1a Solyc04g0646410 Map-Based Cloning and
Transgene

(Shammai et al.
2018)

LIN5 Solyc09g010080 Map-Based Cloning and
Transgene

(Fridman et al.
2000; Zanor et al.
2009)

AgpL1 Solyc01g109790 Map-Based Cloning and
enzyme assay

(Petreikov et al.
2006)

VIF Solyc12g099190 Transgene (Qin et al. 2016)
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Table 1 Validated structure and transcriptional genes of tomato fruit quality metabolism (Continued)

Metabolite
pathway or TF
famaily

Gene name Gene ID Gene function validation
method or regulation
pathway

Reference

INVINH1 Solyc12g099200 Transgene (Jin et al. 2009)

TIV1 Solyc03g083910 Transgene (Klann et al. 1996)

SuSy1 Solyc12g009300 Transgene and enzyme
assay

(D'Aoust et al.
1999)

TRAMP Solyc08g081190 Transgene (Chen et al. 2001)

Frk1/Frk2 Solyc03g006860/ Solyc06g073190 Transgene (Odanaka et al.
2002)

ALMT9 Solyc06g072910 GWAS and transgene (Ye et al. 2017)

Secondary
metabolism

PAL Solyc10g086180 Map-Based Cloning and
transgene

(Brog et al. 2019)

CL Solyc08g083110 Map-Based Cloning and
transgene

(Brog et al. 2019)

C4H Transgene (Millar et al. 2007)

4CL Solyc12g094520 Introgression line and
enzyme activity

(Rigano et al.
2016)

CHS1 Solyc09g091510 Transgene (Schijlen et al.
2007)

CHI Solyc05g010320 Map-Based Cloning and
transgene

(Kang et al. 2014)

F3H Solyc02g083860 Map-Based Cloning and
transgene

(Maloney et al.
2014)

F3’5’H Solyc11g066580 Enzyme assay (Olsen et al. 2010)

DFR Solyc02g085020 Transgene (Andrew et al.
1994)

CTOMT1 Solyc10g005060 Transgene and enzyme
assay

(Mageroy et al.
2012)

AnthOMT Solyc06g06450 Transgene (Gomez Roldan
et al. 2014)

MOMT1 Solyc06g083450 Enzyme assay (Schmidt et al.
2011)

MOMT4 Map-Based Cloning and
enzyme assay

(Kim et al. 2014)

UGT78-a Solyc10g083440 Enzyme assay and transgene (Tohge et al.
2020)

UGTs Solyc12g096870 /Solyc12g098600 Map-Based Cloning and
transgene

(Alseekh et al.
2020)

F3HL Solyc03g080190 Transgene (Meng et al. 2015)

FdAT1 Solyc12g088170 Transgene and enzyme
assay

(Tohge et al.
2015)

GORKY Solyc03g120570 Map-Based Cloning and
Transgene

(Kazachkova et al.
2021)

GAME31 Solyc02g062460 Map-Based Cloning and
Transgene

(Cardenas et al.
2019)

GAME5 Solyc10g085230 Map-Based Cloning and
Transgene

(Szymanski et al.
2020)

GAME4/ GAME6/ GAME11/
GAME12/ GAME17/ GAME18/
GAME2

Solyc12g006460/ Solyc07g043460/Solyc07g043420/
Solyc12g006470/ Solyc07g043480/ Solyc07g043500/
Solyc07g043410

Transgene and enzyme
assay

(Itkin et al. 2013;
Alseekh et al.
2015)

GAME1 Solyc07g043490 Transgene and enzyme
assay

(Itkin et al. 2011)

SAMT Solyc09g091550 QTL mapping and enzyme
assay

(Tieman et al.
2010)

Lecithin:cholesterol Solyc05g050710/ Solyc12g055730/ Solyc03g123750 Map-Based Cloning and (Garbowicz et al.
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Table 1 Validated structure and transcriptional genes of tomato fruit quality metabolism (Continued)

Metabolite
pathway or TF
famaily

Gene name Gene ID Gene function validation
method or regulation
pathway

Reference

acyltransferase/ LIP1 / LIP2 Transgene 2018)

TomLoxC Solyc01g006540 pan-genome analysis and
Transgene

(Chen et al. 2004;
Gao et al. 2019)

GAUT10 Solyc04g064490 GWAS (Bauchet et al.
2017)

PPEAT Solyc02g079490 GWAS (Dominguez et al.
2020)

COI1 Solyc05g052620 Transgene (Li et al. 2004)

AAT1 Solyc08g005770 Transgene (Goulet et al.
2015)

CCD1A Solyc01g087250 Transgene and enzyme
assay

(Simkin et al.
2004)

CCD1B Solyc01g087260 Transgene and enzyme
assay

(Ilg et al. 2014)

FLORAL4 Solyc04g063350 Map-Based Cloning and
Transgene

(Tikunov et al.
2020)

LIP8 Solyc09g091050 Map-Based Cloning and
Transgene

(Li et al. 2020a)

AADC1/2 Solyc08g068610/ Solyc08g006750 Transgene and enzyme
assay

(Tieman et al.
2006)

ASAT1 Solyc12g006330 In vitro enzyme assay (Fan et al. 2016)

ASAT2 Solyc04g012020 In vitro enzyme assay (Fan et al. 2016)

ASAT3 Solyc11g067270 Map-Based Cloning and
Transgene

(Schilmiller et al.
2015)

ASAT4 Solyc01g105580 Map-Based Cloning and
Transgene

(Schilmiller et al.
2012)

IPMS3 Solyc08g014230 Map-Based Cloning and
enzyme assay

(Ning et al. 2015)

MADS TFs CMB1 Solyc04g005320 Pigmentation (Zhang et al.
2018a)

RIN Solyc05g012020 Carotenoid, cell wall and
secondary metabolism

(Fujisawa et al.
2013)

TDR4 Solyc06g069430 Secondary metabolism (Zhao et al. 2019)

MBP8 Solyc12g087830 Cell wall (Yin et al. 2017)

MBP15 Solyc12g087810 Carotenoid (Yin et al. 2018)

MADS1 Solyc03g114840 Carotenoid (Dong et al. 2013)

NAC TFs NOR Solyc10g006880 Pigmentation and cell wall (Gao et al. 2020)

NOR-like1 Solyc07g063420 Pigmentation and cell wall (Gao et al. 2018b)

NAC1 Solyc04g009440 Pigmentation and cell wall (Ma et al. 2014)

NAC4 Solyc11g017470 Pigmentation (Zhu et al. 2014)

NAP2 Solyc04g005610 Pigmentation and fruit
softening

(Kou et al. 2018;
Ma et al. 2018)

MYB TFs MYBATV Solyc10g086290 Anthocyanin (Yan et al. 2020b)

ANT1 Solyc10g086260 Anthocyanin (Schreiber et al.
2012)

MIXTA-like Solyc02g088190 Primary metabolism (Ying et al. 2020)

MYB72 Solyc07g055000 Chlorophylls, carotenoids
and flavonoids

(Wu et al. 2020)

MYB12 Solyc01g079620 Flavonoid (Ballester et al.
2010)

MYB111 Solyc06g009710 SGA (Chen et al.
2019a)
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rearrangements of their connection (Goulao and Oliveira
2008).
In the cell wall, cellulose is generally cross-linked to-

gether with hemicellulose whilst the pectin fills in the
spaces of the networks. The hydrolysis of cellulose and
hemicelluloses is often catalyzed by cellulase and
xyloglucan-endotransglycosylase which can hydrolyze in-
ternal 1→4 β-D-glucan linkages. However, suppression
of cellulase gene expression by antisense method did not
alter the tomato fruit softening process, which indicates
that they are not the predominant enzymes regulating
the cell wall remodeling (Payasi et al. 2009).
As the major components of primary cell wall and

middle lamella, pectins are modified with methyl ester
groups and highly branched with side-chains of galacto-
syl and arabinosyl residues in unripe fruits. On ripening
initiation, the methyl ester groups and branched side-
chains are first removed by pectin methyl esterase
(PME), rhamnogalacturonase (RG) and β-galactanase
(Wen et al. 2020). Then polygalacturonase (PG) can

recognize and hydrolyze the α-1,4-galacturonosyl link-
ages between galacturonide residues of the de-esterified
pectin to produce galacturonide oligomers (Smith et al.
2002; Miedes et al. 2010; Wen et al. 2013; Tateishi et al.
2014; Jiang et al. 2019). However, similar to the result of
cellulase genes, inhibition of PG activity or antisense of
PME genes had only minor effects on fruit softening
(Smith et al. 1990; Wen et al. 2013). As the key enzyme
which breaks the α-1,4-galacturonosyl linkages through
β-elimination reaction, silencing pectate lyase (PL) dra-
matically altered the softening process of tomato fruit,
emphasizing the vital function of PL for pectin
depolymerization in the fruit softening process (Yang
et al. 2017).
In addition to the enzymes mentioned above which

directly modify cell wall components, expansins are lo-
cated at the cell wall and are involved in fruit softening
by disrupting hydrogen bonds between cellulose microfi-
brils and xyloglucans (Brummell et al. 1999; Whitney
et al. 2000; Perini et al. 2017).

Table 1 Validated structure and transcriptional genes of tomato fruit quality metabolism (Continued)

Metabolite
pathway or TF
famaily

Gene name Gene ID Gene function validation
method or regulation
pathway

Reference

AN2 Solyc10g086250 Anthocyanin and volatile (Jian et al. 2019;
Zhi et al. 2020)

WD40 TFs AN11 Solyc03g097340 Secondary metabolism (Gao et al. 2018a)

ERF TFs ERF.G3-like Solyc02g077790 Flavonoid (Li et al. 2020b)

AP2a Solyc03g044300 Pigmentation and cell wall (Karlova et al.
2011)

ERF.B3 Solyc05g052030 Pigmentation (Liu et al. 2014)

GAME9 Solyc01g090340 GWAS and transgene (Cardenas et al.
2016; Zhu et al.
2018)

GRAS TFs GRAS38 Solyc07g052960 Pigmentation, secondary
metabolism and cell wall

(Shinozaki et al.
2018)

ABF TFs AREB1 Solyc04g078840 Primary metabolic (Bastias et al.
2014)

ARF TFs ARF6A Solyc12g006340 Starch and soluble sugars (Yuan et al. 2019)

ARF4 Solyc11g069190 Cell wall (Sagar et al. 2013)

ARF10 Solyc11g069500 Sugar accumulation (Yuan et al. 2018)

BLH TFs BL4 Solyc08g065420 Cell wall metabolism (Yan et al. 2020a)

bHLH TFs GL3 Anthocyanin (Nukumizu et al.
2013)

TT8 Solyc09g065100 Anthocyanin (Qiu et al. 2016)

bHLH114 Solyc01g096370 SGA (Li et al. 2020b)

PRE2 Solyc02g067380 Pigmentation (Zhu et al. 2017)

bZIP TFs bZIP1 Solyc01g079480 Amino acid metabolism (Sagor et al. 2016)

HD-zip TFs HZ24 Solyc04g005800 d-mannose/l-galactose
pathway

(Hu et al. 2016)

E3 ubiquitin
ligase

PPSR1 Solyc01g006810 Carotenoid (Wang et al. 2020)
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Central carbon metabolites
As the key components that influence the favor and
quality of fruit, central carbon metabolites not only dir-
ectly affect the sour-sweet taste but also act as important
carbon skeletons for other metabolites (Malundo et al.
1995). During fruit ripening process, the content of
sugars and organic acids are under highly coordinated
regulation of balance importation from source organ as
well as utilization via the glycolysis, and the tricarboxylic
acid (TCA) cycle (Carrari et al. 2006).
Although the chloroplasts of green fruit can assimilate

CO2, the majority of fruit photoassimilate is imported
from the leaves (Fernie et al. 2020). In leaves, CO2 is ini-
tially fixed to produce triose phosphates in the chloro-
plast prior to export to the cytosol to support sucrose
biosynthesis. Then sucrose acts as the carbon transpor-
tation component to load on the phloem and trans-
ported in the sieve for a long distance (Chen et al. 2012).

After arriving at the fruit, sucrose is unloaded from the
phloem and transported to fruit through two cytological
pathways (the apoplastic and symplastic pathway) and
stored in vacuoles. In past decades, based on the map-
based cloning, several SWEETs (Sugars Will Eventually
be Exported Transporters) (SWEET 1a and SWEET15)
and sugar transporters (SUT1, SUT2 and SUT4) involved
in sucrose transportation have been cloned and validated
to regulate sugar metabolism (Weise et al. 2000; Hackel
et al. 2006; Shammai et al. 2018; Ko et al. 2020).
Sucrose metabolism is a key factor in sugar accumula-

tion under the regulation of sucrose-phosphate synthase
(SPS), sucrose synthase (SS) and invertase (Ivr). SPS can
catalyze uridine diphosphate glucose (UDPG) and fruc-
tose 6-phosphate to synthesize sucrose 6-phosphate
which subsequently hydrolyzed by sucrose phosphate
phosphatase (SPP) to produce sucrose (Dali et al. 1992).
Antisense of tomato fruit sucrose synthase1 (SuSy1) not

Fig. 1 Interrelationships of glycolysis, tricarboxylic acid cycle and fruit quality related metabolism. Names in black letters indicate the metabolite
and names in red letters indicate the validated enzymes. VLC Acyl-CoA: Very-long-chain Acyl-CoA; Chl a: Chlorophyll a; Phein a: Pheophytin a;
Chlide a: Chlorophyllide a; Pheide a: Pheophorbide a; RCC: Red chlorophyll catabolite; FCC: fluorescent chlorophyll catabolite; NCCs:
Nonfluorescent chlorophyll catabolites. ACO-1: Aconitase-1; ICDH1: Isocitrate dehydrogenase 1; MDH: Malate dehydrogenase; PSY, phytoene
synthase; PDS, phytoene desaturase; ZDS, ζ-carotene desaturase; CRTISO, carotenoid isomerase; LCYB, lycopene beta cyclase; LCYE, lycopene
epsilon cyclase; BCH, β-carotene hydroxylase; ZEP, zeaxanthin epoxidase; NSY, neoxanthin synthase; CCD1, carotenoid cleavage dioxygenase1;
PPH: Pheophytin pheophorbide hydrolase; PAL: Phenylalanine ammonia-lyase; C4H: Cinnamate 4-hydroxylase; 4CL: 4-coumarate CoA ligase; CHS:
Chalcone synthase; CHI: Chalcone isomerase; F3H: Flavanone 3-hydroxylase; F3'5'H: Flavonoid 3'5'-hydroxylases; DFR: Dihydroflavonol 4-reductase;
OMTs: O-methyltransferases; UFGT: UDP glucose flavonoid 3-O-glucosyl transferase; AADC2: Aromatic amino acid decarboxylase 2; GAME:
GlycoAlkaloid metabolism
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only reduced the sucrose unloading capacity but also af-
fected starch accumulation and fruit development
(D'Aoust et al. 1999). According to their subcellular lo-
cation, Ivrs are divided into apoplastic invertase, cyto-
solic invertase and vacuolar invertases. Invertase
irreversibly catalyzes the degradation of sucrose into glu-
cose and fructose and the well-known QTL (Brix9-2-5)
which associated with the glucose and fructose contents
is results from the nucleotide polymorphism of apoplas-
tic invertase, Lin5 in the population (Fridman et al.
2000). Moreover, invertase inhibitors which can bind to
invertases and form inactive complexes can also affect
the sugar metabolism (Qin et al. 2016).
Unlike sugar metabolites, the organic acids accumulated

in the fruit mainly depend on the de-novo synthesis in
fruit cell. During fruit cell division phase, organic acids are
highly accumulated in parallel with the accumulation of
soluble sugars (Beauvoit et al. 2014). Subsequently, during
the tomato ripening process, respiration is highly induced
and organic acids are gradually decreased as the respira-
tory substrate and then achieve a palatable sugar/acid ratio
for consumer (Gautier et al. 2008).
As the two main organic acids in fruits, citric acid and

malic acid are the intermediate products of the tricarb-
oxylic acid cycle and phosphoenolpyruvate carboxylase
(PEPC) is the key enzyme in organic acid biosynthesis
(Carrari et al. 2003; Guillet et al. 2012). The product of
glycolysis, PEP is catalyzed by PEPC to form oxaloace-
tate (OAA). OAA then catalyzed by citrate synthase (CS)
and combined with acetyl-CoA to produce citric acid.
Moreover, OAA can also reversibly catalyzed by malate
dehydrogenase (MDH) to generate malic acid (Centeno
et al. 2011). Besides the enzyme of central metabolism,
based on a metabolite-based genome-wide association
study and BSA mapping, Ye et al. (2017) found that Al-
ACTIVATED MALATE TRANSPORTER9 (ALMT9 in
tomato) is the causal gene of
TFM6 (the malate content major QTL) and a 3-bp

indel in the promoter region of ALMT9 which destroys
a W-box binding site and blocks the regulation of tran-
scription repressor WRKY42 cause the variation of
ALMT9 expression and is attributed to the malate vari-
ation among the population.

Secondary metabolism
The secondary metabolism of tomato fruits can be di-
vided into polyphenols, volatile organic compounds
(VOCs) and alkaloids, which act as the bioactive com-
pounds against inflammation, cardiovascular diseases,
and cancer (Andersen and Markham 2005).
As the most important component class of the poly-

phenols, flavonoid metabolites are derived from phenyl-
alanine and synthesized via the phenylpropanoid and
polyketide pathways (Perez de Souza et al. 2019). In

phenylpropanoid pathway, phenylalanine ammonia lyase
(PAL), cinnamate 4-hydroxylase (C4H) and 4-coumaroyl
CoA-Ligase (4CL) catalyze the conversion of phenylalan-
ine to 4-coumaronyl-CoA (Millar et al. 2007; Tohge
et al. 2014). Subsequently, condensing with three mole-
cules of malonyl-CoA, 4-coumaronyl-CoA catalyzed by
chalcone synthase (CHS) produces naringenin chalcone
(Schijlen et al. 2007). Then naringenin chalcone is isom-
erized by chalcone isomerase (CHI) to produce narin-
genin (Schijlen et al. 2007). Moreover, naringenin is
subsequently hydroxylated at position C-3 to form the
dihydrokaempferol (DHK) by flavanone-3-hydroxylase
(F3H) and then enters different branch metabolism of
flavonol and anthocyanin (Tohge et al. 2017).
In the flavonol branch pathway, DHK can be further

hydroxylated at the 3′ position to produce dihydroquer-
cetin (DHQ), catalyzed by the P450 hydroxylase, flavon-
oid 3′-hydroxylase (F3′H). Subsequently, under the
control of flavonol synthase (FLS) enzyme, DHK and
DHQ are converted to kaempferol and quercetin, re-
spectively (Colliver et al. 2002). Moreover, flavonols can
be converted by the flavonoid-3-O-glycosyltransferase
(F3GlcT) to the representative tomato flavonol-
glycosides, such as quercetin 3-O-glucoside and quer-
cetin 3-O-rutinoside (rutin) (Tohge et al. 2020).
DHK can also be hydroxylated at both the 3′ and 5′ po-

sitions by flavonoid 3′, 5′-hydroxylase (F3′5′H) to pro-
duce dihydromyricetin (DHM). Under the action of
dihydroxyflavonol reductase (DFR) and anthocyanin syn-
thase (ANS), DHM can be catalyzed to anthocyanins
(Tohge et al. 2017). Moreover, given that glycosylation is
essential for stability, the anthocyanins generally can be
modified by glycosylation to produce the most abundant
tomato anthocyanins, nasunin and petanin under the
regulation of flavonoid glycosyltransferase (UFGT) (such
as anthocyanin-3-O-glucosyltransferase and anthocyanin-
5-O-glucosyltransferase) (Tohge et al. 2015). Although
anthocyanin is not naturally produced in the cultivar to-
mato fruit due to the switch off this sub-pathway gene ex-
pression in the fruit peel, which may be under the
domestication preference of lycopene red color (Gonzali
et al. 2009), the bio-fortified tomato which are expressed
two transcription factors Delila (Del) and Rosea1 (Ros1)
from snapdragon can significantly induce anthocyanin-
related gene expression and accumulate high amount of
anthocyanin (Butelli et al. 2008).
VOCs are the important characteristic quality index of

fruit, which is mainly composed of a complex mixture of
terpenes, aldehydes, alcohols, esters and ketones and
other volatile components. Based on the different pre-
cursors, VOCs can be divided into four subclasses, (i)
fatty acid volatiles, (ii) amino acid derived volatiles, (iii)
terpenoid volatiles, and (iv) volatiles derived from carot-
enoids (Vogel et al. 2010; Klee and Giovannoni 2011).
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The formation of fatty acid volatiles, such as trans-2-
pentenal and cis-3-hexanal are based on lipoxygenase
(LOX) oxidation and β-oxidation pathway of fatty acid
(Chen et al. 2004). The LOX enzyme catalyzes unsatur-
ated fatty acid to hydroperoxide and then to aldehydes
and esters substance under the regulation of hydroper-
oxide lyase (HPL), alcohol dehydrogenase and alcohol
acyltransferase (AAT). Moreover, fatty acid can be cata-
lyzed to acetic acid, butyric acid and caproic acid in β-
oxidation reaction, and then deoxygenize to alcohols and
then synthesize esters under the action of AAT, whose
activity is attribute to the difference of the ester volatiles
content of the tomato fruits (Solanum lycopersicum) and
its closely related species S. pennellii (Goulet et al.
2015). Moreover, some lipases which can cleave fatty
acids from the glycerol backbone of acylglycerols signifi-
cantly affect the fatty acid-derived volatile levels (Gar-
bowicz et al. 2018). Recently, Li et al. (2020a) have
identified that LIP8 is highly associated with accumula-
tion of short-chain fatty acid-VOCs (C5 and C6) in to-
mato fruit by the metabolite-based genome-wide
association study. The enzyme assay confirmed that
LIP8 can cleave 18:2 and 18:3 acyl groups from glyceroli-
pids and several fruit short-chain fatty acid-VOCs are
significantly decreased in LIP8 CRISPR-edited mutant.
Amino acid derived volatiles mainly use branched

chain amino acids (BCAAs) and aromatic amino acids as
precursors to synthesize branched chain and phenylpro-
panoid volatiles. In tomato fruit, α-keto acid intermedi-
ate in BCAAs catabolism is the direct precursors for the
branched chain flavor volatiles and the glycoconjugation
reaction plays an important role in the emission of phe-
nylpropanoid volatiles from ripening tomato fruit (Tiku-
nov et al. 2010; Kochevenko et al. 2012). Moreover,
AADC2 (aromatic amino acid decarboxylases 2) and
FLORAL4 (a 3-methyl-2-oxobutanoate dehydrogenase)
has been confirmed acting as an important regulator of
phenylalanine-derived volatiles such as 2-phenylethanol,
phenylacetaldehyde and 1-nitro-2-phenylethane (Tieman
et al. 2006; Tikunov et al. 2020).
Terpenoid volatiles are synthesized from the conden-

sation of two C5 components, isopentenyl diphosphate
and dimethyl allyl diphosphate (Abbas et al. 2017). Based
on the carbon skeletons and chemical structure, terpen-
oid volatiles are divided into isoprene-, monoterpene-
and sesquiterpene- derived volatiles and all of them
share the common core biosynthesis pathway in plant.
To increase the terpenoid volatiles content, the heterol-
ogous expressed S-linalool synthase (LIS) gene of Clar-
kia breweri was found to significantly induce the
accumulation of monoterpenes compared to control to-
mato fruits (Lewinsohn et al. 2001). Moreover, modified
the early plastidial terpenoid pathway by expressing the
Ocimum basilicum geraniol synthase gene can

significantly induced the monoterpene accumulation
(Davidovich-Rikanati et al. 2007). Recently, the biochem-
ical and in silicon analysis has identified the 34 terpene
synthase (TPS) genes in tomato genome which contain
one isoprene synthase, 10 monoterpene synthases, 17
sesquiterpene synthases and six diterpene synthases as
the results of expansions in each clade of the TPS gene
family (Zhou and Pichersky 2020).
Besides the important functions as colorants and nu-

trients, carotenoids also act as the vital precursors for
important volatile flavor compounds, such as β-ionone
and pseudoionone (Vogel et al. 2010). The production of
carotenoid-derived volatiles occurring the non-
enzymatic oxidative cleavage of various linear and cyclic
carotenoids or by the cleavage action of carotenoid diox-
ygenase. In tomato, two carotenoid cleavage dioxygenase
1 enzymes (CCD1A and CCD1B) showed differences in
their activity towards different substrates and in their
double bond preferences. Among them, CCD1B has a
more relaxed enzyme specificity which can cleave the
C9′–C10′, C13–C14 and C11′–C12′ double bonds of 9-
cis-β-carotene and higher expression in tomato fruits
which indicated it is the more active enzyme than that
of CCD1A (Simkin et al. 2004; Ilg et al. 2014).
As the representative solanum alkaloids, steroidal gly-

coalkaloids (SGAs) are a series of cholesterol-derived
molecules and act as dual function in tomato fruit. The
most abundant of the SGAs in immature fruit, α-
tomatine, is a toxic chemical to a variety of fungi, insects
and human while esculeosides such as esculeogenin A in
mature fruit is the health-promoting chemical which can
reduce the atherogenesis (Chan Jr and Tam 1985; Fuji-
wara et al. 2007; Huang et al. 2015). During the ripening
process, the toxic α-tomatine is transformed to the non-
bitter and non-toxic esculeosides, which is catalyzed by
several GLYCOALKALOID METABOLISM genes
(GAMEs), such as GAME 1/2/4/5/6/11/12/17/18/31 for
the hydroxylation, acetylation and glycosylation reaction
of detoxication pathway of α-tomatine (Itkin et al. 2011;
Itkin et al. 2013; Alseekh et al. 2015; Cardenas et al.
2016; Cardenas et al. 2019; Szymanski et al. 2020).
Moreover, based on the fine mapping method, a glycoal-
kaloid transporter, GORKY, has been identified which
can transport α-tomatine from the store site (vacuole) to
catalyzation site (cytosol) to promote the detoxication
reaction (Kazachkova et al. 2021).
Moreover, as the insecticidal metabolites found in

trichome in the Solanaceae, acyl-sugars are glycolipids
containing two core parts: sugar cores (such as sucrose,
glucose and inositol-derived disaccharide) and acyl esters
chains lengths from C2 to C20 at different positions on
the sugar cores (Fan et al. 2019). Based on the analysis
of the isogenic introgression lines (ILs) and backcross
introgression lines (BILs), three acyl-sucrose
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acyltransferases (ASATs) of acyl-sugar biosynthesis path-
way have been cloned (Schilmiller et al. 2012; Schilmiller
et al. 2015). Besides these three enzyme, another ASAT
and an amino acid biosynthetic enzymes, isopropylma-
late synthase like 3 (IPMS3) are also involved in the
acyl-sugar biosynthesis (Ning et al. 2015; Fan et al.
2016). The detailed analysis indicates that the diversity
of these genes cause the various acyl-sugar biosynthetic
pathway between the different species: the truncation at
the C-terminus of IPMS3 allele in S. pennellii LA0716
results in predominant accumulation of acylsugars con-
taining isobutyryl (isoC4), the key amino acid substitu-
tion of ASAT3 (Tyr-41-Cys) change the enzyme
characteristic which cause the acyl-sugar differences be-
tween S. lycopersicum and S. habrochaites (Ning et al.
2015; Schilmiller et al. 2015).

Regulation of fruit quality metabolism
In recent decades, after the comprehensive analysis of the
enzymes that are directly involved in the metabolite path-
way of fruit quality, the transcriptional, epigenetic and
post-translational regulation mechanisms have become a
hot topic of research (Lu et al. 2018; Wang et al. 2020).
Based on the fruitENCODE data which contains 361

transcriptome, 71 accessible chromatin, 147 histone and
45 DNA methylation profiles, Lu et al. (2018) found to-
mato fruit ripening is under the regulation of MADS-
type transcriptional feedback circuits. As one of the
most famous MADS family member, the mutant of RIN
has been comprehensively investigated about its
ripening-related phenomena in the past a half-century.
Its fruit significantly lack the ethylene burst and as such
neither changes color nor soften (Robinson 1968; Vreba-
lov et al. 2002; Ito et al. 2017). Although RIN may be
not required for the initiation of ripening, lots of re-
search have demonstrated that several ripening associ-
ated pathways, such as the ethylene, carotenoid, cell wall
and secondary metabolism pathway, are under the regu-
lation of RIN. The large-scale analysis of ChIP-chip and
transcriptome confirmed the RIN function on ripening
through the direct binding and activation of the key
ripening-related structural and regulator genes, ACS2/4,
SGR1, PSY, Cel2, EXP1, PAL1, C4H, LoxC, AAT1, CNR,
NOR, AP2a and itself (Fujisawa et al. 2012; Fujisawa
et al. 2013; Irfan et al. 2016). Moreover, as MADS-box
proteins usually function with other MADSs and act as
multimers to regulate certain pathways, RIN can interact
with other MADS-box transcription factors (such as
FUL1/2 and TAGL1) to co-regulate ripening processes
(Honma and Goto 2001; Shima et al. 2013). In detail, the
TAGL1 and FUL1/FUL2 knock-down mutant exhibited
a significantly decreased ethylene burst and producing
yellow-orange fruit with low carotenoid levels (Vrebalov
et al. 2009; Shima et al. 2014; Gimenez et al. 2015).

Besides the above mentioned transcription factors, re-
cently, some novel MADS transcription factors, such as
CMB1, TDR4, MBP8 and MBP15 have been demon-
strated to act as the important regulators affecting pig-
mentation, secondary metabolism or cell wall
metabolism further confirmed the central function of
MADS transcription factors in the tomato fruit ripening
process (Yin et al. 2017; Yin et al. 2018; Zhang et al.
2018a; Zhao et al. 2019).
As the fruit is developed from the floral organ and

plant-specific NAC (no apical meristem (NAM), Arabi-
dopsis transcription activator factor 1/2 (ATAF1/2) and
Cup-shaped cotyledon (CUC2)) transcription factors
play important roles in Arabidopsis senescence and
floral development, their orthologous genes are also act-
ing as vital regulators of fruit ripening following neo-
functionalisation or repurposing of pre-existing genes
(Lu et al. 2018). For example, NAP2, the tomato putative
ortholog of AtNAP which is the core regulator of leaf
senescence (Guo and Gan 2006), can directly regulate
the gene expression of abscisic acid biosynthesis and
affect the pigmentation and softening of tomato fruits
(Kou et al. 2018; Ma et al. 2018). Moreover, the fine-
mapping result of the non-ripening (nor) mutant indi-
cated that its delayed ripening phenotype is attributed to
the early termination of a NAC family TF protein trans-
lation (NOR). The truncated 186-amino-acid protein
(NOR186) can compete with the wild type NOR for the
accessibility to bind the promoters of GGPPS2 and PL
which are involved in the carotenoid biosynthesis and
cell wall modification (Gao et al. 2020). Based on the
systematically analysis of fruit-expressed NACs function
by Virus-Induced Gene Silencing (VIGS), NOR-like1
which exhibits 62.84% amino acid homology with NOR,
is identified to be involved in fruit ripening. The ripen-
ing initiation of its knock-out lines is significantly de-
layed by 14 days. RNA-sequencing profiling and
chromatin immunoprecipitation-quantitative PCR
(ChIP-qPCR) analysis further confirmed that NOR-like1
can directly bind to the promoters and activate the expres-
sion of ACS2, ACS4, GGPPS2, SGR1, PG2a, PL, CEL2, and
EXP1 (Gao et al. 2018b). Additionally, NAC transcription
factors can also affect the ripening-related hormones bio-
synthesis: the knock-down fruit of NAC4 exhibit the re-
pression of ethylene biosynthesis and in the NAC1-
overexpressing tomato fruit, ethylene synthesis-related
genes is downregulated while the ABA biosynthesis path-
way is induced (Ma et al. 2014; Zhu et al. 2014).
Although cultivated tomato fruit do-not usually accu-

mulate anthocyanin, three loci Anthocyanin fruit (Aft),
atroviolacium (atv) and Aubergine (Abg) can significantly
induce the anthocyanins accumulation in cultivar fruit
after the introgression from wild tomato S. chilense, S.
cheesmaniae and S. lycopersicoides, respectively (Jones
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et al. 2003; Cao et al. 2017). Based on fine-mapping ana-
lysis, an R2R3-MYB transcription factor, AN2-like is re-
sponsible for the Aft phenotype and acts as an activator
of anthocyanin biosynthesis. Another R3-MYB protein,
MYB-ATV is responsible for the atv phenotype and can
competitively interact with bHLH factors (AN1 and
JAF13) of MBW complex, which acts as repressor of
anthocyanin synthesis (Colanero et al. 2018). Recently,
Colanero et al. (2020) reported that the alternative spli-
cing of AN2-like allele represses the translation of the
functional MYB protein, which finally contributes to the
lack of anthocyanin pigmentation phenotype in culti-
vated tomato. Moreover, three other R2R3-MYB tran-
scription factors, ANT1, ANT1-like and AN2 are located
around Aft loci and the overexpression of AN2 and
ANT1 can also significantly accumulate anthocyanin in
cultivar tomato (Schreiber et al. 2012; Zhi et al. 2020).
Besides the function on anthocyanin biosynthesis, MYB
family transcription factors also act as important regula-
tors of other metabolisms. In AN2-OE fruits, the expres-
sion of volatile aroma genes (LOXC, AADC2 and TPS)
are significantly induced, which attribute to the high ac-
cumulation of aroma volatiles, such as aldehyde,
phenylpropanoid-derived and terpene volatiles (Jian
et al. 2019). Recently, the functional characteristic of
MYB72 further confirms that the MYB family can not
only affect the carotenoid accumulation and chromo-
plast biogenesis through dual regulation of POR, CHLH,
TKN2, PSY, Z-ISO and LCYB gene but also negatively
regulate flavonoids and phenolic acids accumulation by
repressing 4CL, CHS1 and CHS2 (Wu et al. 2020).
Moreover, several other transcription factor families

such as WD40 (AN11), ERFs (AP2a, ERF.B3 and ERF.G3-
like), GRAS (GRAS38), ABFs (AREB1), ARFs (ARF6A,
ARF4 and ARF10), BLHs (BL4), bHLHs (GL3, TT8, PRE2
and bHLH114), bZIPs (bZIP1) and HD-zip (HZ24) also
play important roles in the ripening regulation processes.
As the other important components of MBW complex for
anthocyanin biosynthesis, AN11, a tomato WD40 protein
can interact with a bHLH transcription factor TT8 corre-
sponded to the ah (Hoffman's anthocyaninless) locus to
regulate anthocyanin and flavonoid biosynthesis (Qiu
et al. 2016; Gao et al. 2018a). The softening process which
results from cell wall degradation is under the high order
regulation of AP2a, GRAS38, ARF4 and BL4 transcription
factors (Karlova et al. 2011; Sagar et al. 2013; Shinozaki
et al. 2018; Yan et al. 2020a). Through the regulation of
PSY1, PDS and ZDS, the fruit color of PRE2 and ERF.B3
transgenic fruits are dramatically changed (Liu et al. 2014;
Zhu et al. 2017). Recently, based on the MicroTom
Metabolic Network, two novel transcription factors,
ERF.G3-like and bHLH114, are identified to be in-
volved in the flavonoid and SGA metabolism, respect-
ively (Li et al. 2020b).

Given that epigenetic markers such as DNA methylation
affect gene expression and act as an important regulator
of Arabidopsis senescence and flower development (Sung
et al. 2006; Li et al. 2020c), Zhong et al. (2013) found that
the methyltransferase inhibitor, 5-azacytidine can acceler-
ate the tomato ripening process. Moreover, the fruitEN-
CODE data indicate that the core MADS-type regulation
circuit genes of tomato ripening is suppressed by the
DNA hypermethylation and H3K27me3 in the promoter
and gene body of the core genes at the immature fruit
stage while is demethylated and activated in ripening fruit
tissues (Lu et al. 2018). Tomato Cnr is another well-
known mutant. It resulted from a spontaneous epigenetic
change occurring due to the high level of methylation of a
promoter causing a low expression of CNR (Manning
et al. 2006). Similarly, in the Vitamin E pathway, the differ-
ential methylation of a SINE retrotransposon located in
the promoter the causal gene, 2-methyl-6-phytylquinol
methyltransferase (VTE3 (1)) of mQTL9-2-6 affected its
expression and then cause the variation of vitamin E
among the population (Quadrana et al. 2014). Moreover,
besides the repressive regulation of trimethylation of his-
tone H3 at Lys27 (H3K27me3) (Kit et al. 2010; Boureau
et al. 2016; Lu et al. 2018), histone acetylation which act as
gene activator is also involved in the tomato ripening es-
pecially carotenoid biosynthesis by the activation of his-
tone deacetylase 3 (HDT3) while repression of histone
deacetylase 1/3 (HDA1/3) (Guo et al. 2017b; Guo et al.
2017a; Guo et al. 2018).
Post-translational regulations (such as ubiquitination,

oxidation, glycosylation and phosphorylation) of the reg-
ulators and structural ripening-related proteins are also
of considerable importance for fruit metabolism. The
ubiquitin-proteasome system-mediated proteolysis is a
crucial protein degradation pathway in eukaryotes.
GLK2 which positively regulates the plastid level and the
pigment accumulation, is a substrate of the CUL4-
DDB1-DET1 ubiquitin ligase complex for the prote-
asome degradation (Tang et al. 2016). Recently, Wang
et al. (2020) found that tomato PSY1 contains two ubi-
quitinated lysine residues and its precursor protein can
interact with Plastid Protein Sensing RING E3 ligase 1
(PPSR1) to mediate its degradation via ubiquitination.
Moreover, based on the iodoacetyl tandem mass tag
(iodoTMT)-based redox proteomic approach, the oxida-
tion levels of polygalacturonase 2A and 1-
aminocyclopropane-1-carboxylate oxidase-like protein
(E8) are significantly changed in parallel with the react-
ive oxygen species (ROS) fluctuate during fruit ripening,
which supply novel regulation mechanisms of ROS on
the of tomato ripening (Wang et al. 2021). As the glyco-
sylation and phosphorylation are remarkable modifica-
tion to produce the functional enzyme, N-glycosylation
of tomato TIV-1 and Pectinesterase 1 is important for
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its enzyme activity and protein stability and the phos-
phorylation of sucrose synthase, hexose and CDKA dir-
ectly affect the sugar metabolite and fruit development
(Roessner-Tunali et al. 2003; Anguenot et al. 2006; Gon-
zalez et al. 2007; Tauzin et al. 2014; Zhang et al. 2020).
Although many of the major pathways and the genes

involved in fruit quality related metabolite pathways
have been identified, the branched pathways and the as-
sociated genes are not yet fully analyzed. In recent de-
cades, a large amount of researches has indicated that
the weighted gene correlation network analysis is a
powerful method to explore the novel enzymes, potential
partners in protein–protein interactions (PPIs) and regu-
lation of aspects of metabolism (Shoemaker et al. 2007;
Fukushima et al. 2012; Mandal et al. 2020). Therefore,
we constructed the gene co-expression network of the
presentative genes (PSY for carotenoid, SGR for chloro-
phyll, PL for cell wall, CHS1 for secondary metabolite)
based on the high-resolution spatiotemporal transcrip-
tome data of tomato fruit development and ripening
(Luo et al. 2013; Espana et al. 2014; Yang et al. 2017;
Shinozaki et al. 2018; Jian et al. 2019; Segado et al. 2020;
Xiong et al. 2020) (Table 2).
Given that SGR and PSY are the important proteins in-

volved in pigment metabolism and the former research re-
port that SGR protein can interact with PSY, SGR and
PSY are in the same co-expression network and show a
high correlation (coefficient =0.78). Moreover, both of
them exhibited high correlation with several gene involved

in carotenoid biosynthesis, such as carotenoid isomerase
(CRTISO, Solyc10g081650), 15-cis-ζ-carotene isomerase
(Z-ISO, Solyc12g098710) and lycopene beta/epsilon cy-
clase (Solyc01g102950) (Table 1). For the cell wall metab-
olism, PL is chosen as the guide genes to construct the co-
expression network. The results indicated that beta-d-
xylosidase (XYL1, Solyc10g047030), Expansin 1(EXP1,
Solyc06g051800), Cellulase2 (Cel2, Solyc09g010210) and
beta-galactosidase 4 (TBG4, Solyc12g008840) exhibit high
co-expression relation with PL (Table 1). Among the
genes identified by the co-expression network, some of
them such as CRTISO, XYL1, EXP1, Cel2 and TBG4 have
previously been mentioned to be involved in tomato rip-
ening process (Brummell et al. 1999; Isaacson et al. 2002;
Smith et al. 2002; Flors et al. 2007; Zhang et al. 2018b; Li
et al. 2019), which further confirms the power of the co-
expression network analysis. Besides these genes, Z-ISO
and Solyc01g102950 will be the valuable candidate genes
for assessing their function in carotenoid metabolism. Fur-
thermore, because the enzymes of each metabolism are
largely located in the same site in the cell (for example
SGR, PSY, CRTISO, Z-ISO and Solyc01g102950 are all lo-
cated in plastid), the high co-expression of them also indi-
cates the possibility they may interact with each other to
form a complex.
As CHS1 is the important gene catalyzed the first

committed step of the multibranched flavonoid pathway,
the co-expression network of CHS1 has been con-
structed. The result indicates that the key gene of the

Table 2 Co-expression genes of presentative genes.

Presentative
genes

Coexpressed
gene

Gene name coefficient Presentative
genes

Coexpressed
gene

Gene name coefficient

PSY1 Solyc05g012020 RIN 0.96 CHS1 Solyc11g013110 FLS6 0.93

Solyc10g081650 CRTISO 0.95 Solyc10g078240 C3H 0.81

Solyc12g098710 Z-ISO 0.83 Solyc12g088460 F3′H-like 0.80

Solyc08g080090 SGR 0.78 Solyc01g096670 C3′H 0.74

Solyc01g102950 Lycopene beta/epsilon
cyclase

0.77 Solyc02g083860 flavanone 3-hydroxylase 0.91

Solyc03g097030 4CL 0.74

SGR Solyc12g017250 PSBR 0.88 Solyc03g097170 Cinnamoyl-CoA reductase 0.69

Solyc12g098710 Z-ISO 0.83 Solyc03g115220 F3′H 0.94

Solyc03g031860 PSY 0.78 Solyc03g117600 HCT 0.74

Solyc10g081650 CRTISO 0.67 Solyc04g080550 Phenylcoumaran benzylic ether
reductase

0.78

Solyc05g052240 CHI2 0.87

PL Solyc05g012020 RIN 0.884 Solyc05g053550 CHS2 0.92

Solyc10g047030 LEXYL1 0.85 Solyc08g076790 Cinnamoyl-CoA reductase 0.73

Solyc06g051800 LeEXP1 0.69 Solyc09g007910 PAL5 0.64

Solyc09g010210 Cel2 0.66 Solyc09g007920 PAL1 0.75

Solyc12g008840 TBG4 0.55 Solyc09g059170 flavonoid glycosyltransferase
genes

0.72

Zhu et al. Molecular Horticulture             (2022) 2:2 Page 12 of 19



multibranched pathway, such as PAL4 (Solyc09g007920),
CHS2 (Solyc05g053550), FLS1 (Solyc11g013110), F3H
(Solyc02g083860), F3′H (Solyc03g115220) and CHIL
(Solyc05g052240), are highly co-expressed with CHS1
(coefficient=0.75, 0.92, 0.93, 0.91, 0.94 and 0.87, respect-
ively). This phenomenon further confirm that phenyl-
propanoid pathway may be under a global regulation
mechanism, such as the transcriptional regulation of
MYB12 (Fernandez-Moreno et al. 2016).

Conclusions and Future perspectives
As the identification of the genes involved in ripening
related metabolic pathway is rate-limiting step to im-
prove fruit quality, fruit researcher have paid huge of at-
tention on it and try to accelerate it through different
methods. The traditional fine-mapping strategy have
identified lots of key genes of the fruit quality related
metabolite change, which supply the perfect guide genes
for weighted gene correlation network analysis. In fu-
ture, owing to the less cost of sequencing, the combin-
ation of the traditional fine-mapping strategy, next
generation sequence and new analysis methods, such as
weighted gene correlation network analysis, will acceler-
ate the identification of the novel gene to comprehen-
sively illuminate the metabolite change and regulation
mechanism of tomato fruit ripening.
For each gene, the publications which confirmed the

gene function by transgenesis or genetic analysis have
been listed in the table.
Pearson correlation coefficients were calculated via the

function corAndPvalue from the WGCNA package (Lang-
felder and Horvath 2008) using the published gene expres-
sion levels of different fruit stages (Shinozaki et al. 2018).
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