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Abstract 

Potato is the most widely grown non-grain crop and ranks as the third most significant global food crop follow-
ing rice and wheat. Despite its long history of cultivation over vast areas, slow breeding progress and environmental 
stress have led to a scarcity of high-yielding potato varieties. Enhancing the quality and yield of potato tubers remains 
the ultimate objective of potato breeding. However, conventional breeding has faced challenges due to tetrasomic 
inheritance, high genomic heterozygosity, and inbreeding depression. Recent advancements in molecular biology 
and functional genomic studies of potato have provided valuable insights into the regulatory network of physiologi-
cal processes and facilitated trait improvement. In this review, we present a summary of identified factors and genes 
governing potato growth and development, along with progress in potato genomics and the adoption of new breed-
ing technologies for improvement. Additionally, we explore the opportunities and challenges in potato improvement, 
offering insights into future avenues for potato research.
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Introduction
Potato (Solanum tuberosum L.), a member of the Sola-
nacea family, is believed to have originated in the Andes 
Mountains along the Peru-Bolivia border in South 
America approximately 10,000 years ago (Spooner et al. 
2005). As the world’s third largest food crop after rice and 
wheat, the cultivation of potatoes has expanded in recent 
years. By 2020, potatoes were cultivated across 140 coun-
tries on a land expanse of 16.5 million hectares, yielding 
a production of 359 million tons. Potato tubers are rich 
in starch, high-quality protein, dietary fiber, vitamins 

(B1, B6, B9, C, and E), minerals (sodium, magnesium, 
potassium, zinc, iron, and copper), and various bioac-
tive compounds (carotenoids, anthocyanins, phenolics, 
and flavonoids), offering substantial nutritional benefits 
(Camire et al. 2009). Potato is a staple food for approxi-
mately two-thirds of the global population, plays a cru-
cial role in addressing regional food shortages, combating 
poverty, and enhancing food security. In addition to their 
dietary importance, potatoes have various industrial 
applications, being processed into animal feed, alcohol, 
and biofuels. Furthermore, potato starch is widely used 
as a thickener and stabilizer in the food industry as well 
as a raw material in the production of paper, cosmetics, 
adhesives, textiles, and plastics (Burlingame et  al.  2009; 
Dupuis and Liu 2019).

As vital crops for food and as vegetables, tubers serve 
as the primary nutrient storage and reproductive organs, 
with their yield and quality predominantly determined 
by their development and maturation processes. The 
induction and formation of potato tubers are affected by 
interactions among various environmental factors, plant 
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hormones, and signaling molecules, along with the reg-
ulation of numerous essential genes and several signal 
transduction and metabolic pathways. In-depth research 
into these key factors and the elucidation of tuberization 
mechanisms are crucial for advancing the yield and qual-
ity of potato tubers (Agrawal et al. 2008).

Although extensive climate adaptation has promoted 
the widespread distribution of potatoes globally, pota-
toes are vulnerable to various abiotic stresses (nutri-
ent deficiency, cold/frost, heat, drought, salinity, and 
flooding) and biotic stresses (fungal, bacterial, viral, and 
insect pests), along with post-harvest problems (such as 
enzymatic browning caused by injury and the accumula-
tion of reducing sugars during cold storage) (Handayani 
et al. 2019), all of which can compromise the quality and 
yield of potato tubers. Thus, there is a pressing need to 
develop elite potato varieties with enhanced agronomic 
traits and resistance to biotic and abiotic stresses through 
accelerated breeding methods, which is crucial for eco-
nomic and agricultural sustainability.

Most potatoes grown commercially are tetraploid cul-
tivated varieties. Due to their complex tetraploid inher-
itance, highly heterozygous genome, self-incompatibility, 
and inbreeding depression, genetic breeding and variety 
improvement in potatoes have been challenging. How-
ever, advances in molecular biology, including rapid pro-
gress in sequencing technology, genomic selection, and 
multi-omics approaches, have spurred the development 
of comparative genomic analysis and functional research 
on potato genes. Furthermore, availability of the potato 
genome sequence and efficient potato transformation 
systems have substantially advanced potato genetic engi-
neering, enhancing key agronomic traits. This review 
highlights recent progress in potato functional genomics 
and genetic engineering, along with their applications in 
potato breeding over the past decade. In addition, we dis-
cuss the challenges and prospects for future research in 
potato functional genomics.

Key regulatory factors involved in potato growth 
and development and crucial agronomic traits
Vegetative growth
Vegetative growth of potato refers to the process of 
establishment and growth of vegetative organs, such as 
roots, stems, and leaves. We categorized potato growth 
and development into six key phases: (a) dormancy stage, 
where freshly harvested tubers experience a period of 
dormancy with inhibited visible bud growth; (b) tuber 
sprouting stage, where tubers transition from dormancy 
to sprouting, with sprouts developing from the eyes 
of the tuber; (c) vegetative growth stage, starting with 
sprout formation and continuing until 8–12 leaves are 
formed, alongside root system and stolon development; 

(d) tuber induction and initiation, beginning with tuber 
emergence at the stolon ends and extending until the leaf 
system is fully developed; (e) tuber development, marked 
by substantial tuber elongation and growth cessation in 
the vegetative and root systems; and (f ) tuber matura-
tion, involving leaf structure physiological aging and the 
start of tuber skin tightening and thickening (Saidi and 
Hajibarat  2021).

Dormancy of tubers
The dormancy and germination of potato tubers are cru-
cial for potato cultivation, production, and processing 
because tubers without a dormancy period are difficult 
to sprout (Haider et  al. 2019; Haider et  al. 2022). Tuber 
dormancy prevents seed potatoes harvested in spring 
or summer from sprouting too soon planted in the fol-
lowing summer and autumn (Saidi and Hajibarat 2021). 
Moreover, when tubers are used as food and processing 
materials, a prolonged dormancy period is necessary for 
transportation and storage. Premature dormancy break 
can lead to substantial water and nutrient consump-
tion, reducing commodity quality and value. Controlling 
the dormancy phase duration poses a major challenge 
in the potato industry and for seed producers (Mouzo 
et al. 2022).

Understanding molecular mechanisms underlying 
potato tuber development is essential for enhancing yield 
and quality. Recent advancements in molecular biology 
have highlighted the complex role of phytohormones in 
potato tuber development, including their involvement 
in dormancy and sprouting regulation. Recently, a com-
parative proteome profiling of potato cultivars during 
endodormancy was performed through a high-resolution 
two-dimensional electrophoresis (2-DE) coupling with 
reversed-phase liquid chromatography-tandem mass 
spectrometry (LC-Triple TOF MS/MS), identifying a 
mitochondrial ADP/ATP carrier, catalase isozyme 2, and 
heat shock 70 kDa protein as key responders to changes 
in dormancy (Mouzo et al. 2022), and providing valuable 
insights into the molecular basis of dormancy regulation 
in potatoes and implications for storage.

Phytohormones are pivotal for regulating potato tuber 
dormancy and sprouting. Gibberellic acid (GA), cyto-
kinins (CKs), and auxin contribute to dormancy termi-
nation (Muthoni et al. 2014), whereas ethylene (ET) and 
abscisic acid (ABA) help maintain bud dormancy in pota-
toes (Wróbel et  al.  2017). The molecular mechanisms 
underlying these hormonal interactions are complex and 
part of an intricate network operating at multiple levels, 
including signal perception, transduction, transcriptional 
regulation, and metabolic exchange. Recent studies have 
indicated the importance of Auxin response factor (ARF) 
genes in meristem reactivation and tuber sprouting 
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and the inhibitory effect of strigolactones on tuber bud 
growth (Liao et  al. 2018; Suttle  2004). Additionally, the 
complete life cycle of potato depends on the orchestrated 
interaction among various phytohormones, elucidat-
ing these molecular interactions is essential crucial for 
enhancing yield and quality (Aksenova et al. 2012; Saidi 
and Hajibarat 2021).

Auxin plays a critical role in affecting tuber dormancy 
and sprout growth. StARF1  is downregulated in dor-
mant tubers and upregulated in sprouting ones, and 
involves in tuber and sprouting dormancy breakage (Ben 
Chaabane et al. 2013; Liu et al. 2012). The content of free 
indole-3-acetic acid (IAA) in potato tuber buds increases 
markedly during germination, associating with the tran-
scription level of ARF6 (Gao et al. 2016; Kumlay 2014). In 
addition, the interplay between auxin and ABA signaling 
is essential for the shift from dormancy to seed growth 
(Aksenova et al. 2013). ARF10 and ARF16 are necessary 
for sustaining ABI3 expression by acting as activators of 
ABI3  transcription (Liu et  al.  2012). Transcription fac-
tors ABI3, ABI4, and ABI5 are pivotal in the dormancy-
to-sprouting transition, controlling the expression of 
downstream target genes involved in seed germination 
(Shu et al. 2016). StABI5 plays a crucial role in the regu-
lation of tuber dormancy by controlling auxin signaling 
pathway and regulating the expression of downstream 
genes (Zhu et  al.  2020a, b). Other gene families involv-
ing in ABA metabolism and biosynthesis pathways such 
as StZEP, StNCED, StCYP, and StSUT4, also play impor-
tant roles during potato dormancy (Gong et  al.  2021; 
Destefano-Beltrán et al. 2006). Transgenic potato plants 
expressing  CK oxidase/dehydrogenase 1 (CKX1) and 
IPTgenes showed altered endogenous CK levels and GA-
mediated sprouting (Sonnewald and Sonnewald 2014).

Brassinosteroids (BRs) also play crucial roles in regulat-
ing plant growth and germination, and it is reported that 
BR at 500  nM is able to break the dormancy of tubers. 
Overexpression of StBIN2, the negative regulator of 
BR signal transduction, prolongs dormancy, whereas 
the silencing StBIN2  induces premature sprouting (Liu 
et  al.  2024). RNA-sequencing (RNA-seq) analysis indi-
cated that  StBIN2 affects ABA signal transduction and 
the expression of lignin synthesis genes, highlighting 
interactions among StBIN2, StSnRK2.2, and StCCJ9 (Liu 
et al. 2024).

Germination of tubers
Breeding potato cultivars with extended dormancy and 
decreased sprout growth is crucial for enhancing stor-
age and shelf-life. However, rapid emergence is vital for 
the seed potato industry. Understanding the molecular 
mechanisms will facilitate the development of improved 
cultivars (Sharma et  al.  2021). Various factors including 

plant hormones, genetic makeup, signaling molecules, 
genotype, storage temperature, and other environmental 
conditions affect the tuber sprouting (Wang et al. 2020). 
Using transcriptomic and metabolomic methods, a 
recent study revealed that chlorine dioxide (ClO2) treat-
ment regulated the expression of 3,119 genes and 932 
metabolites in potato tubers. Genes downregulated were 
mainly related to hormone signaling, whereas upregu-
lated ones were primarily involved in processes such as 
phenylpropanoid biosynthesis and the MAPK signal-
ing pathway (Zheng et al. 2022), providing new insights 
into the ClO2-mediated suppression of potato sprouting. 
In addition, StCYP707A was found to be upregulated in 
tubers with low T6P levels, accelerating dormancy release 
(Debast et al. 2011). GPT2 plays a key role in potato tuber 
sweetening by transporting G6P across the plasma mem-
brane for dephosphorylation (Barrera-Gavira 2021).

Regulating bud growth through sucrose synthesis and 
transport is essential for germination. Targeting alkaline 
invertases (AI) and neutral invertases (NI) genes affects 
the accumulation of reducing sugars hence to affect ger-
mination. The NI genes StNI4, StNI5, and StNI6 promote 
sucrose breakdown in cold-stored potato tubers, leading 
to increased accumulation of reducing sugars (Datir and 
Regan 2022). Exogenous ET is involved in potato sprout 
regulation, and ET suppresses tuber sprouting, stimulates 
sucrose synthesis, and inhibits starch regeneration (Dai 
et al. 2016). Moreover, ET treatment reduces the expres-
sion of the invertase inhibitor factor while enhancing the 
activity of SPS, BAM, AI, and NI (Tosetti et al. 2021), or 
reduces total phenol accumulation and enhances their 
degradation, thus inhibiting sprouting (Dako et al. 2021).

Strigolactones (SLs) and auxin collaboratively inhibit 
tuber bud growth, affecting shoot and root architecture 
(Liao et  al.  2018). Transgenic potatoes with decreased 
expression of SL biosynthetic gene CCD8 sprouted earlier 
than wild-type tubers (Pasare et  al.  2013). Overexpres-
sion of GA2-oxidase 1 (StGA2ox1) reduced early sprout 
growth, leading to a dwarfed plant phenotype, suggest-
ing that StGA2ox1  is important in sprouting initiation 
instead of dormancy regulation (Kloosterman et al. 2007; 
Roumeliotis et al. 2013a, b). These findings expanded the 
understanding of the molecular mechanisms involved in 
potato tuber dormancy and sprouting (Fig. 1), shedding 
light on the potential in improving potato storage, qual-
ity, and industry efficiency.

Overall growth of potato tissues
Potato development from a seed or tuber is a complex 
process involving asexual reproduction through tuber 
propagation and sexual reproduction through flower pol-
lination. The root provides nutrients and water for stolon 
and tuber growth (Iwama  2008). Drought substantially 
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affects yield, especially in shallow-rooted crops such as 
potatoes (Sołtys-Kalina et al. 2016). The potato root sys-
tem, known for its shallow depth and weak soil penetra-
tion, is considered less efficient than that of other crops 
(Joshi et al. 2016; Stalhman et al. 2007).

Commercial potatoes are propagated using freshly 
sprouting tubers, termed “mother” tubers. “Basal roots” 
first emerge where the sprout meets the mother tuber 
(Wishart et al. 2013). As the sprout grows, roots develop 
at specific nodes on its underground stem, closely associ-
ated with stolon initiation sites, forming a pattern where 
four roots encircle the emerging stolon (Joshi et al. 2016). 
Roots at the stolon/stem junction and nodes on the sto-
lon are termed “stolon roots” and “stolon node roots”, 
respectively (Wishart et al. 2013). Root system architec-
ture (RSA) is affected by the growth and branching of 
adventitious roots (ARs) and lateral roots (LRs) (Joshi 
et al. 2016).

Endogenous and environmental factors regulate the 
complex adventitious rooting process in potatoes, affect-
ing root elongation, branching, and longevity (Joshi and 
Ginzberg  2021). Potato plants form adventitious roots 
post-embryonically, with lateral roots emerging through 
auxin-dependent cell cycle activation (Joshi et al. 2016). 
Genes found in model plants and involved in root sys-
tem responses to environmental cues, such as  ANR1, 
NRT1, PHO1, and RSA1, are expressed in potato roots 
as well, indicating the potential to enhance soil uti-
lization and yield through manipulating potato RSA 
(Joshi et  al.  2016). miR164 affects LR development by 

targeting NAC transcription factors in potatoes (Zhang 
et al. 2018). Two ARF genes, StARF10 and StARF16, iden-
tified as the targets of stu-miR160a/b, exhibited vary-
ing expression levels correlated with root development 
stages (Yang et  al.  2021a, b). Suppressing stu-miR8006-
p5-1ss9AT considerably altered potato root architecture 
through affecting its target, auxin-induced in root cul-
tures protein 12 (Duan et al. 2023).

Nitrogen (N) is crucial for potato growth, affecting 
metabolism, photosynthesis, starch synthesis, and anti-
oxidant content, with cultivars responding differently to 
N availability, highlighting the importance of N manage-
ment (Zhang et  al.  2020). Magnesium (Mg) transport 
and distribution are vital for root growth, with Mg trans-
porter gene expression varying in response to Mg levels, 
influencing root development in Mg-deficient conditions 
(Koch et al. 2020). Phosphorus (P) availability affects the 
RSA of potato and the expression of genes related to root 
development. The StCAD gene family plays a key role in 
potato’s response to Cd stress, with post-Cd stress analy-
sis revealing upregulation in most family genes, enhanc-
ing CAD activity and promoting lignin accumulation in 
roots (Fig. 2, left; Yang et al. 2024).

Potato is sensitive to water and nutrient stresses due to 
its shallow and sparse root system, and lower soil nutri-
ent or water availability limit the growth and tuber yield 
of potato   (Nurmanov et  al. 2019; Milroy et  al.  2019). 
Farmers usually increase fertilizer input to ensure the soil 
nutrient supply and potato productivity (Xu et al. 2019; Li 
et al. 2020), which generates gaseous emission and causes 

Fig. 1  Schematic representation of phytohormone-related pathways in the regulation of potato dormancy and sprouting. Hormones abscisic acid 
(ABA), cytokinin (CK), ethylene (ET), gibberellins (GAs), auxin, brassinosteroids (BR), and strigolactones (SL) regulate potato dormancy and sprouting 
synergistically or antagonistically by regulating the expression of related genes
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environmental pollution, as well as human health hazards 
(Wang et  al.  2020). Enhancing nutrient use efficiency is 
thus a critical need for achieving sustainable agriculture 
and human health. With the efforts of scientific research-
ers, advancements in nutrient utilization and fertilizer 
management optimization appeared, including Nutri-
ent expert system (Sha et al. 2022), sustainable agri-food 
systems using multi-nutrient fertilizers in Kenyan small-
holder farming systems (Adolwa et  al.  2023), and nitro-
gen management indicators under drip irrigation (Di 
et al. 2024), to improve sustainable production and tuber 
quality of potatoes.

In addition to root growth, the development of stem 
and leaves, which provides nourishment through pho-
tosynthesis (Mouzo et  al.  2022), is vital for potato 
growth after germination. Positive and significant asso-
ciations exist between the height of the tallest stem and 
the combined root and stem mass, as well as with tuber 

mass, suggesting that more robust plants usually yield 
more tubers (Fig. 2, left; Kacheyo et al. 2021).

Leaf number and leaf area index are strongly corre-
lated, and these traits can be assessed through a single 
measurement (Liu et  al.  2020). StHK proteins, includ-
ing StHK3 and StHK4, act as CK receptors in potatoes 
and  StHK3  gene is predominantly expressed in leaves 
(Lomin et  al.  2018). MicroRNAs miR159, miR160, 
miR162, miR166, miR167, miR168, and miR171 are 
highly expressed in leaf and are crucial in determin-
ing potato leaf architecture (Yang et  al.  2019). Recent 
study supports the involvement of miR160 in regulat-
ing potato leaf curvature by targeting StARF10/16/17 
(Natarajan et  al.  2020). Overexpressing the cytokinin-
deactivating gene  CYTOKININ OXYDASE 2  (CKX2) 
exhibited an excessive growth of axillary shoots and 
branching (Pino et  al.  2022). Understanding the regu-
latory mechanisms governing potato stem and leaf 

Fig. 2  Regulation of potato vegetative growth by phytohormones and inorganic elements, and leaf senescence by environmental stimuli. Genes 
ANR1, NRT1, and PHO1, and inorganic nutrient elements nitrogen, magnesium, and phosphorus, regulate root development of potato. MicroRNAs 
and phytohormones regulate leaf development. Circadian clock, SA/ROS, ABA, stress, secondary metabolites, and sucrose regulate leaf senescence 
through various pathways. StABL1 and StABI5, ABA signalling pathway transcription factors; StUBA2a/b and StUBA2c, the NA-binding proteins; 
StSWEET11/15/10C, sucrose transporters
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development could be key to improving potato crop 
productivity and quality.

Senescence in potato
Senescence refers to the gradual degradation or decline 
of cells, tissues, organs, and organisms with increasing 
age (Woo et al. 2019). In plants, pro-senescence serves as 
a self-protection mechanism under stress, but it also sub-
stantially limits crop yield potential, leading to economic 
losses. A negative correlation was observed between 
life cycle length and yield in C × E populations and spe-
cifically in the genotype CE3027 (Clot et  al. 2023; Shi 
et al. 2024). However, varieties selected for the breeding 
program prioritized late senescence and early nodula-
tion to maximize yields (Clot et  al. 2023). Thus, under-
standing senescence regulation mechanisms is crucial for 
developing new varieties and enhancing potato yield.

Leaf senescence is a biological process that is coordi-
nately regulated by multiple genes and is self-depleting, 
which involves highly complex genetic programs that 
are precisely controlled by multiple layers of regulation, 
including chromatin and transcriptional regulation, post-
transcriptional regulation, translational regulation, and 
post-translational regulation (Guo et al. 2021). The Leaf 
Senescence Database (LSD, 4.0) contains 31,214 genes 
and 1,037 mutants from 86 different species, providing 
valuable resources for elucidating the regulatory mecha-
nisms of leaf senescence (Cao et  al.  2022). Leaf senes-
cence is affected by age, plant hormones, and external 
factors such as light, temperature, and nutrient avail-
ability. The senescence process involves complex regula-
tory networks and interactions among multiple signaling 
pathways, shaped by both environmental factors and 
internal signals (Lim et al. 2007). Genetic and functional 
genomic studies of senescence-related genes have shed 
light on the regulatory mechanisms of potato senescence 
(Fig.  2, right), which are important for managing and 
potentially improving crop longevity and productivity.

Hormones
Hormone content analysis in grafted potato plants dem-
onstrated that early-maturing varieties exhibited higher 
levels of ABA and SA but lower levels of IAA compared 
with late-maturing varieties, indicating that elevated 
ABA and SA levels, along with decreased IAA levels, 
might contribute to the early physiological maturity of 
potato plants (Hui et al. 2022).

ABA insensitive 5 (ABI5), a basic leucine zipper (bZIP) 
transcription factor essential for ABA signaling, affects 
leaf yellowing and senescence when overexpressed in 
transgenic potatoes (Finkelstein and Lynch 2000; Zhu 
et  al. 2020a, b). StABI5 like 1 (StABL1) interacts with 
StSP3D and StSP6A, creating new flowering and tuber 

formation complexes in a 14–3-3 protein-dependent 
manner, leading to early flowering and tuber formation, 
thereby shortening the growth cycle (Jing et  al.  2022). 
Overexpression of  StUBA2a/b in Arabidopsis triggers 
premature leaf senescence, with upregulation of genes 
related to SA signaling and biosynthesis in StUBA2a/b-
OE plants (Na et al. 2015).

TCP transcription factor StAST1 (StABL1 and StSP6A-
associated TCP protein 1) regulates the ripening syn-
drome by interacting with StSP6A and StABL1, which 
in turn reduces the formation of the nodulin-activated 
complex (aTAC). StAST1 regulates the ABA/GA activ-
ity through activation of StGA20ox1and interaction with 
StABL1 (Sun et al. 2024).

Circadian clock
StCDF1, a DOF transcription factor, is regulated by cir-
cadian rhythms and interacts with StSP6A to influence 
tuber formation and plant life cycle. Removal of the 
C-terminal DOF3 region from StCDF1 alleles enhanced 
protein stability, promoting potato ripening (Klooster-
man et  al.  2013). In  Arabidopsis, the FKF1-GI protein 
complex interacts with CDF1. The resulting complex 
suppresses the expression of StCO1/2  and alleviates 
the repression of StSP6A expression, thus promotes 
plant maturation and tuber development (Kloosterman 
et al. 2013). StCDF1 acts as a negative regulator of senes-
cence by binding and suppressing StORE1S02, a homolog 
of ORESARA1, to shorten life cycle (Shi et  al. 2024; Tai 
et  al. 2024). StABL1 collaborates with florigen (StSP3D) 
and tuberigen (StSP6A) under both long-day and 
short-day conditions to advance potato maturity (Jing 
et al. 2022).

StABI5 is involved in chloroplast development and 
photosynthesis and is influenced by the circadian clock. 
Overexpressing StABI5 in potato accelerates dark-
induced leaf yellowing and senescence, revealing that 
darkness enhances the transcriptional activity of StABI5, 
triggering chlorophyll catabolism gene expression, lead-
ing to chlorophyll breakdown, and causing leaf yellowing 
and senescence (Zhu et  al.  2020a, b). Red light treat-
ment enhances APX activity more than other treatments, 
boosting antioxidant capacity and thus delaying leaf 
senescence (He et al. 2022).

Stress
Salt stress is a major abiotic factor affecting senescence. 
Under salt stress, photosynthetic pigments, proteins and 
biomass of potato plants decrease, whereas ROS and 
MDA contents increase, as well as the soluble sugars, sol-
uble proteins and proline contents due to the enhanced 
enzymatic activity of POD, SOD and CAT (Wang 
et al. 2023a, b). StHPT and St-gamma-TMT, key enzymes 
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in tocopherol synthesis, are crucial for plant responses 
to salt stress. Mutants deficient in these enzymes dem-
onstrated decreased tocopherol levels. When exposed to 
400 mM NaCl, plants with reduced expression of StHPT 
and St-gamma-TMT  exhibited delayed leaf senescence 
(Abbasi et al. 2007).

Drought stress reduces the photosynthetic efficiency 
of potato leaves (Obidiegwu et  al.  2015). Darkness acti-
vates the transcriptional activity of  StABI5  and induces 
the expression of chlorophyll catabolism related genes to 
accelerate the chlorophyll degradation, leading to leaf yel-
lowing and senescence (Zhu et al. 2020a, b). Verticillium 
dahliae, a soil-borne fungus, triggers wilt, chlorosis, and 
premature plant senescence (Dung et al. 2014). Overex-
pressing StPP2Ac2b in potatoes increases susceptibility 
to pathogens, indicating that StPP2Ac2b positively influ-
ences pathogen-induced senescence. This effect might be 
linked to its role in controlling the spread of cell death 
after mechanical injury (Muñiz García et al. 2022).

Secondary metabolites
Metabolomic analysis revealed that the early-maturing 
Z5 scion exhibited an increase in phenolic acids and fla-
vonoids, whereas the late-maturing Z18 scion displayed 
a decrease in amino acids, phenolic acids, and alkaloids 
(Hui et  al.  2022). Knockdown of GMPase in transgenic 
plants promotes a senescence phenotype, suggesting that 
GMPase affects senescence by increasing ascorbic acid 
content (Keller et  al.  1999). StHPT, involved in tocoph-
erol synthesis, is critical for senescence regulation; RNAi 
mutants of HPT showed faster leaf senescence and 
increased oxidative stress responses, highlighting the 
involvement of tocopherol in leaf senescence (Abbasi 
et al. 2007; Abbasi et al. 2009). Three phenolic acid com-
pounds (1-caffeoylquinic acid, protocatechuic acid-
4-glucoside, and trihydroxycinnamoylquinic acid) and a 
flavonoid glycoside (myricetin-O-glucoside-rhamnoside) 
inhibit the growth of precocious cultivars and associate 
with the precocious traits in potato (Hui et al. 2022).

Sucrose, lipids and mRNA
Maturity is essential trait for breeders to select 
potato cultivars suitable to grow in different latitudes. 
StSWEET10C and StSWEET11  have been identified to 
be associated with early potato maturity through RNA-
seq analysis and metabolomic assays (Hui et  al.  2022). 
StORE1S02 promotes expression of  StSWEET11 and 
SAG29/SWEET15, increasing sugar transport and 
leading to senescence and yield loss in potatoes (Shi 
et al. 2024). However, whether leaf senescence is driven 
by sugar accumulation or deficiency remains to be clari-
fied (van Doorn 2008). Although ethylene accelerates leaf 
senescence in potatoes, lysophosphatidylethanolamine 

(LPE) can delay ethylene-induced senescence and could 
mitigate the loss of apical dominance in micropropa-
gated potato plantlets (Özgen et  al.  2005). Additionally, 
long-distance transport signal molecules, mRNAs, are 
revealed to be involved in maturity of tetraploid culti-
vated potatoes by regulating transcript levels of related 
genes like StCBF1, StCBF2, StMADS18 (Hui et al. 2022).

Flowering in potato
Plant flowering, marking the shift from vegetative to 
reproductive growth in the shoot apical meristem (SAM), 
involves dynamic changes in growth and development, 
cell division at the stem tip meristem, and subsequent 
morphological transformations. During flowering induc-
tion, the SAM transitions to an inflorescence meristem 
(IM), which then forms flower meristems (FMs) that pro-
duce flowers, fruits, and seeds. In Arabidopsis, the IM 
leads to the continuous growth of inflorescences (Shan-
non and Meekswagner 1991; Bradley et al. 1997; Larsson 
et  al.  1998). At least six pathways regulating flowering, 
including the photoperiod, vernalization, gibberellin, 
autonomous, age-dependent, and temperature-sensi-
tive pathways have been identified, as well as key genes 
such as  FLOWERING LOCUS T (FT) and transcription 
factors such as CONSTANS (CO) (Fornara et  al. 2010; 
Song et  al.  2012; Song et  al. 2014; Rosas et  al.  2014). 
Recently, studies revealed the functional evolution and 
unique regulatory mechanisms of FT gene family in hor-
ticulture plants, indicating the promising applications 
of these genes as breeding targets (Wang et  al. 2022a, 
b). Unlike  Arabidopsis, potatoes are monoecious and 
homogamous, facilitating self-fertilization and hybridiza-
tion. They can reproduce both sexually through flower-
ing and asexually through tuberization. Flowering time 
in potatoes is affected by interactions between internal 
and external factors, including hormones, sugars, isopre-
noids, and microRNAs, along with external cues such as 
photoperiod (Fig. 3).

Endogenous regulation
Arabidopsis  FT is a key protein with strong flower-
inducing activity (Wigge  2011). The homologous genes 
of FT have identified in tomatoes and potatoes, high-
lighting their importance in flowering signals (Kinosh-
ita et  al.  2011). In rice, the homologs Hd3a and RICE 
FLOWERING LOCUS T1 (RFT1) regulate flowering 
under short-day and long-day conditions, respectively 
(Komiya et  al.  2008). In potatoes, flowering also relies 
on mobile FT-like proteins, with two homologs, StSP3D 
and StSP6A. StSP3D is primarily involved in flowering 
regulation, and its expression in leaves is controlled by 
photoperiod, whereas StSP6A is considered the main reg-
ulatory factor for tuber formation (Navarro et al. 2011). 
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Additionally, three more FT-like genes (StSP5G, StSP5G-
like, and StSP3A) have been found in potatoes (Xu 
et  al.  2011). In tomatoes and rice, FT binds with FD 
and a 14–3-3 protein to form the so-called “flowering 
activation complex” (FAC), which regulates the expres-
sion of characteristic genes of the floral meristem tissue, 
such as  SOC1, AP1, and FUL (Pnueli et  al. 2001; Taoka 
et al. 2011). Interesting, FAC complexes similar to those 
observed in tomatoes and rice regulate the flowering 
process of potatoes (Almekinders and Wiersema 1991; 
González-Schain and Suarez-Lopez 2008).

StABL1 plays a role in the formation of alternative 
TACs (aTACs) and alternative FACs (aFACs) in potato, 
which are involved in flowering. Overexpressing StABL1 
results in the early initiation of flowering (Liu et al. 2019). 
StSP6A interacts with StABL1, bridged by St14-3-3 s, to 
form an FAC-like complex that promotes flowering (Teo 
et  al. 2017). CO, a BBX (B-box type zinc finger) family 
member, enhances flowering in Arabidopsis in a photo-
period-sensitive manner. Heterologous expression of CO 
in potatoes inhibited flowering and stem block formation, 
indicating a different mechanism in potato flowering 
regulation (González-Schain and Suarez-Lopez  2008). 

The potato genome contains three CO-like genes 
(StCOL1/StCOL2/StCOL3), which are located in a tan-
dem array on chromosome 2 (Abelenda et  al.  2016). 
Silencing and overexpression of  StCO in potato can 
lead to early flowering, which can be explained by the 
upregulation of potato FT homologous protein StSP3D. 
StBBX24 is a clock control gene encoding a B-box pro-
tein located in the cytoplasmic and nuclear chroma-
tin fractions and knockdown of STBBX24 expression 
resulted in earlier flowering. By contrast, overexpression 
of StBBX24 did not produce flower buds when compared 
with wild-type plants (Kiełbowicz-Matuk et  al.    2022), 
suggesting that the regulation of StCO expression is nec-
essary to control flowering time in potato

Photoperiod
Photoperiod significantly influences potato flower-
ing, with plants in regions with shorter daylight hours 
experiencing flowering earlier than those in areas with 
extended sunlight exposure. This timing ensures that 
potatoes flower at the optimal period for successful polli-
nation and seed production. Key photoreceptors involved 
in photoperiod-induced flowering in potatoes include 

Fig. 3  A diagram of the regulatory mechanism of potato flowering. Photoperiod, sucrose, microRNA, and isoprenoids play crucial roles 
in the regulation of potato flowering. StSP3D interacts with transcription factor StABL1, bridged by St14-3-3 s to form a flowering activation 
complex (aFAC) that promotes flowering. Under long day (LD) condition, StCO inhibits StSP3D expression, reducing the formation of aFAC 
and thereby inhibiting flowering. Conversely, under short day (SD) condition, StCO promotes the expression of StSP3D, which, in turn, promotes 
flowering. StSUT1, StSUT2, and StSUT4, sugar transporters
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phytochrome A (StPHYA), phytochrome B (StPHYB), 
and phytochrome F (StPHYF). The silencing of StPHYF 
leads to an early flowering because it activates the florigen 
encoding gene StSP3D and other related genes. Addition-
ally, transcriptional and microarray data identified many 
genes such as StMADS1, StMADS13, StFDF1.1, and 
StSUT1, which are potentially involved in both tuberiza-
tion and flowering processes (Wang et al. 2023a, b).

Under short-day condition, accumulated StSP6A forms 
a TAC with StABL1 facilitated by St14-3–3 proteins, 
affecting GA metabolism, inhibiting GA activity at sto-
lon tips, and promoting tuberization. Under both long-
day and short-day conditions, StSP3D interacts with 
StABL1 through St14-3-3  s, creating an FAC-like com-
plex that promotes flowering (Jing et  al.  2022). Under 
short-day or long-day conditions, StCO enhances or 
represses  StSP3D  expression, promoting or inhibiting 
flowering, respectively (Navarro et al. 2011).

Daily light integral (DLI) significantly influences 
flowering time, with higher DLI advancing flower bud 
emergence by activating the StSP3D gene. Although 
StSP3D  expression increased under high DLI, StSP3D-
silenced lines also exhibited early flowering under these 
conditions, suggesting that high DLI-induced flowering is 
not solely dependent on the StSP3D pathway (Plantenga 
et  al.  2019). High DLI might affect sucrose and  StTPS1 
expression, potentially triggering StSP3D and acceler-
ating flowering. Observations under various light con-
ditions demonstrated that high DLI improves plant 
carbohydrate status, as determined by measuring sucrose 
and starch in leaves and stem tips, and StTPS1 expression 
in leaves. However, this does not indicate a direct link 
between carbohydrate status and the flowering process 
(Plantenga et al. 2019).

Flower development is expedited under a combina-
tion of low photoperiod and high light intensity, whereas 
high photoperiod or low light levels decelerate flowering. 
Genetic disruptions in PHYF, StCOL1, or StSP5G lead to 
swift flowering and tuberization under low-light condi-
tions (Abelenda et al. 2016).

Hormones
GA4 binds tightly to its receptor GID1, forming a com-
plex with the flowering inhibitor DELLA, which then 
undergoes ubiquitination and degradation via the 26S 
proteasome, mitigating the suppressive effect of DELLA 
on flowering (Wang et  al.  2009). GA3 treatment also 
affected the reproductive growth of potato plants. For 
early maturing varieties with limited flowering capac-
ity that do not bud, a 50% flowering rate can be induced. 
In varieties with strong flowering potential, GA3 can 
prompt early flowering and prolong the flowering dura-
tion. This effect may result from GA3’s ability to hinder 

tuberization, shift nutrient distribution, and facilitate 
inflorescence development (Wu et al. 2014).

Sucrose
Sugar plays a crucial role in the flowering control of vari-
ous plants. The sucrose transporter (SUT) gene family is 
widely distributed in higher plants. Despite low homol-
ogy among sucrose transport proteins from different spe-
cies, they all fall under the category of proton sucrose 
co-transporters (Kuhn et al. 1997).

In potatoes, the role of carbohydrates in regulating 
flowering is less understood. Studies have indicated that 
StSUT1 predominantly facilitates sugar accumulation in 
tubers (Chandran et al. 2003). Research on StSUT4 sug-
gested its involvement in flowering and tuber forma-
tion (Chincinska et  al.  2008). RNA interference (RNAi) 
targeting  StSUT4 during potato flowering reduced 
StSUT1  expression, increased plant sucrose levels 
and promoted early flowering and higher tuber yield 
(Chincinska et  al.  2008). StSUT2-RNAi affects flower-
ing time and tuber yield without affecting carbohydrate 
storage in leaves and tubers, possibly influencing cell wall 
component metabolism (Gong et al. 2023).

MiR172 is involved in phloem movement and sugar-
dependent signaling for flower and tuber initiation in 
potato plants, illustrating the link between solute trans-
port and the onset of flowering and tuberization. The 
expression of mature miR172 in wild-type and StSUT4-
silenced potato plants is dependent on sucrose signaling 
(Garg et al. 2021).

Isoprenoids and microRNAs
Isoprenoids, a large group of plant natural products, play 
major roles in plant growth and development. Overex-
pression of HMGR1  in plants leads to increased levels 
of sterols, steroidal glycoalkaloids (SGAs), and plastidial 
isoprenoids, resulting in early flowering, greater stem 
height, more biomass, and higher total tuber weight 
(Moehninsi et  al.  2020). Overexpressing miR156, which 
may act as a graft-transmissible signal, leads to reduced 
tuber yield and delayed flowering (Bhogale et  al.  2014). 
Conversely, miR172 enhances flowering and initiates 
tuberization even under noninductive conditions (Martin 
et al. 2009).

Further research is required to fully elucidate the 
specific regulatory mechanisms and pathways of the 
flowering process in potatoes, which is essential for 
understanding potato reproductive development and 
could contribute to advancements in potato breeding.

Potato tuberization
As the storage and harvesting organ of potatoes, tubers 
are a vital source of starch, protein, antioxidants, and 
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vitamins. Tubers form in the near apical region of 
underground stolons (Ewing and Struik  1992) and the 
formation process is categorized into four stages: sto-
lonogenesis, tuber induction and initiation, tuber 
enlargement, and maturation (Viola et  al. 2001). The 
development of potato tubers is co-regulated by vari-
ous internal factors and external conditions, which acti-
vate multiple signal transduction pathways, exhibiting 

intricate upstream and downstream relationships and 
interactions (Fig. 4).

Hormones

Auxin  Auxin exhibits an increase in its levels prior to 
and during tuber growth, and plays an important role in 
tuberization (Roumeliotis et  al.  2012). Studies indicate 

Fig. 4  Regulatory factors involved in potato tuberization. A Auxin, ABA, CK, and JA promote, whereas GA inhibits, tuberization. B Under 
high temperature, StTOC1 inhibits the expression of StSP6A by acting on microRNA. C StSP6A and StBEL5 produced in leaves are transported 
to the stolon stem tip as a movement signal to induce tuberization, and StCOL1/2 inhibits tuberization by inhibiting the accumulation of StSP6A 
and StBEL5 mRNAs in leaves
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that auxin positively affects tuberization in a concentra-
tion-dependent manner, with IAA content in the sub-
apical stolon region rising by 45% during apical expan-
sion (Koda and Okazawa  1983). Applying 2 to 10  mg/L 
IAA externally promoted early tuberization by regulating 
sucrose accumulation at the stolon tips (Wang et al. 2018; 
Zhang et  al. 2005), highlighting the link between auxin 
and tuberization. DR5 promoter-driven GUS expression 
and staining revealed a marked increase in auxin levels 
in stolons before tuberization, remaining high through-
out tuber growth, emphasizing auxin’s crucial role in this 
phase (Roumeliotis et al. 2012). The upregulation of the 
auxin synthesis gene  TMS1, driven by a tuber-specific 
promoter (B33 promoter), during tuberization corre-
sponds with increased auxin levels and reduced carbo-
hydrate and photoperiod dependence for tuber enlarge-
ment in  vitro (Kolachevskaya et  al.  2015). This suggests 
the positive effect of auxin on potato tuber enlargement, 
indicating its potential to boost potato yield by augment-
ing auxin levels.

Analysis of the potato genome revealed numerous genes 
essential for auxin signaling comparable to those in 
Arabidopsis. For example, potato has five receptor genes 
(six in Arabidopsis) (Kolachevskaya et al. 2017), 22 ARF 
genes (23 in Arabidopsis), and 25 AUX/IAA genes (29 in 
Arabidopsis) (Kumar et al. 2015). The auxin-related genes 
are differentially expressed in the early stages of tuber 
development. A study demonstrated the involvement 
of StIAA in tuber development. When 4-week-old plants 
were treated with IAA (10 μM) for 3 h, 12 StIAA genes 
were highly expressed in stolons, most of which were 
auxin-sensitive (Gao et  al.  2016). StIAA1 gene is accu-
mulated in potato tubers after fungal infection and 
injury, and the expression level of  StIAA1 mRNA in 
potato leaves significantly increased under IAA treat-
ment (Zanetti et al. 2003). Silencing the expression of the 
StIAA2 gene led to increased plant height, lower petiole 
attachment, and extreme curvature of stem tip leaf pri-
mordia. This was accompanied by altered expression of 
several downstream genes, including other Aux/IAA 
family members (Kloosterman et al. 2006).

During the early stages of tuber development, auxin 
levels in stolons increased, accompanied by the upregu-
lated expression of two PIN family genes, suggesting 
the substantial role of auxin transport in potato tuberi-
zation (Kloosterman et  al. 2008). In sequenced pota-
toes, 10 PIN family genes were identified, with StPIN3 
and StPIN4 predominantly active in stolons and StPIN1 
and StPIN4  mainly active in young tubers (Roumeliotis 
et  al.  2013a, b). The expression of  GUS genes driven by 
StPIN2/4 promoters was observed in the vascular bun-
dles during the initial tuber stage and in parenchyma cells 

during rapid tuber growth, highlighting the crucial role 
of StPIN  genes in auxin distribution during early tuber 
development (Roumeliotis et al. 2013a, 2013b).

GAs  High endogenous GA levels associated with 
the uninduced state of potato, inhibiting tuberization 
and encouraging stolon elongation (Railton and Ware-
ing  1973; Xu et  al.  1998). The primary bioactive GAs, 
GA1 and GA3, decrease rapidly before tuberization 
after being elevated during stolon growth (Malkawi 
et  al.  2007). Tuberization can be induced by applying 
GA biosynthesis inhibitors, with high GA levels at stolon 
tips favoring meristem elongation and lower GA levels 
needed for tuberization initiation.

GA 20-oxidase (GA20ox) is crucial for synthesizing 
active GAs (Hedden and Thomas 2012). StGA20ox1 over-
expression resulted in delayed tuber development 
(Roumeliotis et  al.  2013a, b). Similarly, StGA2ox1 is 
essential for tuberization, with its expression increasing 
in early tuber development stages, especially in the sub-
apical region of stolons and growing tubers (Kloosterman 
et al. 2007). The activity of StGA2ox1 at tuber initiation 
likely facilitates normal tuber growth by altering GA lev-
els. Moreover,  StGA3ox2  overexpression delays tuber 
formation, whereas StGA3ox2 RNAi lines produce more 
tubers (Carrera et al. 2000; Jackson et al. 2000; Bou Tor-
rent et al. 2011; Roumeliotis et al. 2013a, b).

ABA  The endogenous level of ABA increases dur-
ing tuber induction and declines during tuberization. 
Although the role of ABA in tuberization is not fully 
understood, it is hypothesized to stimulate tuberization 
by counteracting the inhibitory effects of GA (Grandel-
lis et al. 2016). Initially, as tuberization begins, the ABA/
GA ratio markedly increases. When the tuber swells, 
ABA levels rise and GA levels drop. However, tuber for-
mation is substantially affected by the GA/ABA ratio and 
not by the absolute hormone concentration (Macháčková 
et al. 1998).

CK  CK is pivotal in regulating potato tuberization, 
affecting cell division and proliferation. Early tuber 
growth exhibited a positive correlation between cell pro-
liferation rate and the levels of auxin and CK (Raspor 
et  al.  2020a). Endogenous CK peaks during tuber for-
mation, and studies have indicated that applying exog-
enous CK (3  mg/L) or upregulating CK synthesis genes 
in tubers enhances tuberization (Cheng et al. 2020; Koda 
and Okazawa  1983; McGrady et  al.  1986; Raspor et  al. 
2020a, b). However, overexpressing genes encoding CK 
oxidase, an enzyme that inactivates CK, results in fewer 
tubers, and overexpressing the  IPT  gene reduces tuber 
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yield, complicating the determination of the precise 
role of CK in tuberization (Hartmann et al. 2011). Dur-
ing tuber development, BEL and POTH signaling factors 
modulate CK synthesis. Following CK synthesis, it sup-
presses the expression of POTM1  through receptor his-
tidine kinases (StHKs), fostering cell division in the mer-
istem and encouraging starch accumulation in the tubers 
(Lomin et al. 2018; Mariana et al. 2006).

JA  JA enhances potato tuber formation by counteract-
ing the effects of GA (Aksenova et al. 2012). Initial stud-
ies have identified 12-OH-JA (tuberonic acid, TA) and 
its glucoside (TAG) as key substances promoting tuber 
formation and development (Yoshihara et  al. 1989). TA 
and TAG, synthesized in leaves and transported to sto-
lon tips, increase JA levels there, inducing stolon swelling 
(Koda et al. 1991; Takahashi et al. 1994). Further research 
showed increased jasmine content in the newly formed 
potato tuber cortex (Abdala et al. 1996). JA and TA levels 
in tubers and adjacent stolons decrease during tuberiza-
tion (Abdala et al. 2002; Cenzano et al. 2005). Enhancing 
tuber JA content through exogenous application or gene 
overexpression promotes tuberization (Abe et  al.  1990; 
Cenzano et al. 2007; Koda et al. 1991; Sohn et al. 2011), 
illustrating the role of JA in tuber formation and devel-
opment. Overexpression of the transcription inhibitor 
StJAZ1 of JA signaling pathway can inhibit the initiation 
and enlargement of the top tubers of creeping stems, 
leading to a decrease in yield (Begum et al. 2022).

Despite the promotive effects of JA on tuberization, its 
specific role remains debated due to varying experimen-
tal JA concentrations (Ruiz del Castillo et al. 2010). Low 
JA concentrations (0.03 to 1  μM) thicken potato meris-
tems and boost stem, leaf, and root growth (Castro et al. 
1999; Cenzano et al. 2003; Ruiz del Castillo et al. 2010), 
whereas high concentrations (> 10 μM) may not enhance 
and can even inhibit tuber growth (Ravnikar and Gogala 
1990; Ravnikar et al. 1992; Ruiz del Castillo et al. 2010). 
Applying JA at optimal concentrations (1 to 10  μM) is 
crucial for promoting tuber cell enlargement and forma-
tion (Pelacho and Mingo-Castel 1991; Pruski et al. 2002; 
Sarkar et al. 2006).

Temperature
High temperature inhibits tuberization in potatoes (Hij-
mans  2003), with this negative effect being consistent 
across different potato varieties (Van Dam et  al. 1996; 
Lehretz et  al.  2019; Singh et  al.  2015). StSP6A plays a 
role in temperature-dependent tuberization, with its 
expression decreasing under high-temperature condi-
tions (Hancock et  al.  2014; Lehretz et  al.  2019; Mor-
ris et  al.  2019). The potato gene  StTOC1, analogous to 

Arabidopsis TOC1, acts as a heat-responsive transcrip-
tional regulator that suppresses StSP6A expression (Han-
cock et  al.  2014; Morris et  al.  2019). Silencing  StTOC1 
increases tuber yield and StSP6A transcription levels. 
The StSP6A promoter contains a TOC1 recognition 
motif, suggesting the direct interaction of StTOC1 with 
the StSP6A  promoter (Morris et  al.  2019). Additionally, 
a microRNA named SUPPRESSING EXPRESSION OF 
SP6A (SES) targets and negatively regulates the  StSP6A 
transcription. Overexpressing SES reduced StSP6A 
transcription, but not when targeting codon-optimized 
StSP6Acoop. Overexpressing StSP6Acoopenhanced potato 
tuber yield under high temperatures (Lehretz et al. 2019).

Recent research has highlighted the significance of 
posttranscriptional regulation in the early phase of tran-
scription and transcriptional regulation as a key late-
stage factor that suppresses StSP6A expression in leaves 
under high temperatures. Overexpressing StSP6A  in 
leaves counteracted the suppression of tuber formation 
caused by high temperatures, but it did not mitigate the 
later-stage decline in tuber yield, likely due to inhib-
ited sugar transport. Transcriptome analysis identified 
potential regulators involved in the thermal response 
of tuberization at various stages, suggesting that pota-
toes employ distinct molecular mechanisms over time 
to effectively manage tuber development at elevated 
temperatures (Park et al. 2022). GA biosynthesis inhibi-
tor chloroethyltrimethylammonium chloride (CCM) 
could counteract the adverse effects of high temperature 
on tuber formation when applied to plants or stem seg-
ments (Menzel  1983). By overexpressing  StGA2ox1  in 
potatoes, the level of bioactive GA decreased, promoting 
tuber formation (Dong et al. 2017; Shi et al. 2016). Over-
expression ofStSP6A also triggered StGA2ox1 expression 
(Kloosterman et al. 2007; Navarro et al. 2011). However, 
the molecular mechanisms within the temperature-
responsive components of the GA signaling pathway and 
the exact relationship between StSP6A and GA remain 
unclear.

Photoperiod

Phytochrome  The key photoreceptors associated 
with photoperiod-induced tuberization in potatoes are 
StPHYA, StPHYB, and StPHYF as described above. 
StPHYA detects light signals under far-red light condi-
tion, contributing to the reorganization of potato bio-
logical rhythms and tuber formation. StPHYB, accu-
mulating stably in green leaves, acts as a long-distance 
signaling molecule, responding to photoperiod changes 
under red light. StPHYF and StPHYB potentially regulate 
potato tuberization through heterodimer formation, sup-
pressing tuber formation under non-inductive long-day 
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conditions. Additionally, the blue light receptor FLAVIN-
BINDING KELCH REPEAT F-BOX PROTEIN 1 (FKF1) 
in potatoes forms a complex (StFKF1/StGI) with the cir-
cadian clock core regulator GIGANTEA (GI), utilizing 
blue light to gauge day length (Zhou et al. 2019).

Constans (CO) and Cycling Dof Factor 1 (CDF1)
Transcription factor CO, crucial for regulating flower-
ing and tuberization, is tightly controlled by circadian 
rhythms. Potatoes have two CO variants (StCO1 and 
StCO2), also known as StCOL1/2, which negatively influ-
ence tuberization (Navarro et al. 2011). StCO overexpres-
sion delays tuberization, with its inhibitory impact on 
tuberization transmissible via grafting (González-Schain 
et  al.  2012). The DOF (DNA-binding with one finger) 
gene family, unique to plants, modulates the expression 
of various genes during growth and development. The 
CDF1 (StCDF1) protein, part of the DOF family in pota-
toes, interacts with StGI1 and StFKF1, downstream of 
clock components StGI1 and StFKF1. The StFKF1/StGI 
complex influences StCDF1 stability, which in turn regu-
lates StCOL1/2 expression, making StCDF1 a vital player 
in the circadian clock’s regulation of StCO (Kloosterman 
et al. 2013; Sawa et al. 2007).

Flowering locust (FT) homologous genes
FT proteins, produced in leaves and transported via 
phloem, are recognized as signaling molecules that trig-
ger flowering, with CO proteins serving as transcrip-
tion factors regulating FT  expression (González-Schain 
et al. 2012). Grafting studies in tobacco and potato have 
demonstrated that florigenin, or tuberogenin, acts as 
a mobile signal for both flowering and tuberization 
(Abelenda et  al.  2014), implying that these processes 
might share a common signaling molecule. Potatoes 
have four FT-like genes:  StSP6A, StSP5G, StTFL1, and 
StSP3D. StSP6A is confirmed to be a mobile signal from 
leaves to stolon tips under long-day conditions, inducing 
tuberization. In photoperiod-sensitive varieties, limited 
sunlight triggers StSP6A mRNA accumulation in leaves 
and stolons, enhancing tuberization (Navarro et al. 2011; 
González-Schain et  al.  2012). Inducible promoter-
driven  StSP6A expression also activates tuber marker 
genes, with higher expression in early-maturing and 
lower in late-maturing varieties, indicating a link between 
StSP6A expression and tuber maturation, though the 
transcriptional regulation mechanism remains unclear.

Under long-day conditions, StPHYB detects light sig-
nals and forms a complex with E3-ubiquitination ligase 
FKF1 and nuclear protein GI, which then regulates 
StCDF1, influencing StCOL1/2  expression and conse-
quently inhibiting StSP6A and tuberization (Sawa et  al. 
2007). The impact of StCOL1/2 on tuber induction, 

confirmed through grafting, suggests its remote regula-
tory role in signaling molecule gene expression, align-
ing with StCDF1’s modulation of StCOL1/2 and StSP6A 
activity. StCOL1/2’s suppression of StSP6A is also 
affected by StSP5G (Abelenda et  al. 2016; Zhou et  al. 
2019). Additionally, the FT-like gene StTFL1 maintains 
high mRNA levels in stolons during tuber induction and 
early development, with StTFL1 overexpression increas-
ing tuber numbers (Guo et al. 2010), highlighting its role 
in tuber induction and growth. While StSP3D is known 
to influence flowering (Navarro et al. 2011), its effect on 
tuberization remains unreported.

StBEL5 and POTH1
StBEL5 acts as a positive regulator of tuberization, with 
its mRNA produced in leaves and transported via the 
phloem to underground stolon tips (Banerjee et al. 2007). 
StBEL5 expression in leaves is triggered by low levels of 
blue and red light, but remains unaffected by sunlight 
duration. StBEL5 overexpression leads to early tuberiza-
tion, while RNAi-mediated StBEL5 suppression notably 
decreases tuber yield (Sharma et  al. 2016). The StBEL5 
protein triggers various tuber-forming genes, includ-
ing StSP6A and StCDF1 (Abelenda et  al. 2016; Sharma 
et  al. 2016). During tuberization induction, StSP6A 
and StBEL5, produced in leaves, are transported to the 
stolon’s tip, while StCOL1/2 counters tuberization by 
reducing StSP6A and StBEL5 transcriptions in leaves 
(Hannappel et al. 2017).

POTH1 gene expression in potatoes is light-induced, 
with POTH1 mRNA moving to the stolon tip to aid 
tuberization. Research indicates POTH1 and StBEL5 
together suppress the potato gibberellin oxidase gene 
StGA20ox1, converting active GA1 and GA4 into inac-
tive GA8 and GA34, thus influencing GA synthesis dur-
ing tuberization (Chen et al. 2004). The StBEL5-POTH1 
complex might also elevate cytokinin levels, suggesting 
StBEL5 and POTH1 collaboratively influence tuber for-
mation by regulating hormone levels at the stolon tip 
(Chen et al. 2004).

Development of potato tubers is also regulated by post-
transcriptional regulation. N6-Methyladenosine (m6A) 
is the most abundant internal chemical modification in 
eukaryotic mRNA, which widely involved in the regula-
tion of plant growth and development, plant–microbe 
interactions, plant-environment interactions, and crop 
trait improvement through regulating RNA stability, 
alternative polyadenylation, chromatin state, translation, 
and miRNA events (Tang et al. 2023; Zhou et al. 2022). 
Recently, it was demonstrated that the human FTO-
mediated plant m6A removal in potato promoted tuber 
enlargement and caused ~ 50% increases in yield and 
biomass in field trials, demonstrating that modulation of 
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plant RNA m6A methylation is a promising strategy to 
improve yield (Yu et al. 2021).

In conclusion, potato tuberization involves a com-
plex interplay of external environmental factors, endog-
enous hormones, and signaling molecules that activate 
or repress specific genes, manage biochemical pathways, 
and direct assimilate distribution, causing stolon enlarge-
ment. Future research should aim to dissect the roles of 
key genes, metabolic pathways, and signaling molecule 
interactions in tuberization, offering insights for develop-
ing high-yield and high-quality potato cultivars via pre-
cise molecular breeding.

Accumulation of storage compounds
Potatoes are rich in various nutrients, serving as a signifi-
cant source of balanced nutrition in human diets. Tubers 
are primarily composed of carbohydrates, which consti-
tute about 70%–85% of the dry matter, mostly as starch; 
they also have low lipid and protein contents. Potatoes 
are particularly high in vitamin C, contributing to the 
antioxidant activity, and are a good source of various B 
vitamins. The potato tuber skin is rich in dietary fiber 
and potassium.

Starch biosynthesis and degradation
As the primary stored carbohydrate in potato tubers, 
potato starch consists of two glucose polymers: amyl-
ose (about 18%–21% of starch content) and amylopectin 
(about 79%–82% of starch content) (Zeeman et al. 2010), 
which are stored in semicrystalline, insoluble granules 
with growth rings, predominantly found in plastids and 
known as starch granules (Buléon et al.   1998). The for-
mation of the growth rings of starch granules is influ-
enced by the structure of starch polymers (Pilling and 
Smith 2003). In addition, potato starches harvested at dif-
ferent growth stages show significant variations in struc-
ture and physicochemical properties (Yang et al. 2021b).

Potato starch biosynthesis and degradation occur 
in distinct organelles based on the tissue type: chloro-
plasts in autotrophic organs and amyloplasts in hetero-
trophic organs, respectively (Lloyd and Kossmann 2015). 
Transient storage starches in source tissues meet basic 
energy demands, such as those required for diurnal 
cycles and biological processes (Orzechowski  2008). 
In photosynthetically active leaf tissue, starch synthe-
sis starts with the conversion of photosynthesis product 
fructose 6-phosphate (F6P) to ADP-glucose through a 
series of enzymatic reactions catalyzed by phosphoglu-
coisomerase (PGI), phosphoglucomutase (PGM), and 
ADP-glucose pyrophosphorylase (AGPase) in the chlo-
roplast (Sonnewald and Kossmann 2013). While in the 
sink organ tuber, sucrose unloaded from the phloem is 
hydrolyzed into UDP-glucose and fructose by sucrose 

synthase (SuSy) in the cytoplasm (Bahaji et al. 2014). In 
amyloplasts, G6P is converted back to G1P by plastid 
PGM, then ADP-glucose is generated by AGPase, serving 
as the substrate for starch biosynthesis (Van Harsselaar 
et al. 2017).

Long chain linear and branched starch molecules are 
formed by the action of starch synthases (SSs), granu-
lar-bound starch synthases (GBSSs), starch branching 
enzymes (SBEs) using ADP-glucose, and debranching 
enzymes (DBEs) that trim excess or improper branch 
points (Zeeman et  al.  2010; Bahaji et  al.  2014). Soluble 
SS enzymes of potato: SSI, SSII, and SSIII, are crucial 
in amylopectin synthesis by elongating α-glucan chains 
(Ball and Morell 2003; Patron and Keeling  2005). These 
enzymes extend short, medium, and long chain starches, 
respectively (Brust et  al.  2013), with SSIII contribut-
ing to about 80% of the soluble starch synthase activity 
in tubers (Tomlinson and Denyer,  2003; Cuesta-Seijo 
et al. 2016). The fourth isoform, SSIV, is thought to reg-
ulate the initiation of starch granules (Pfister and Zee-
man 2016). Notably, there is species- and organ-specific 
variation in these enzymes’ activities (Bertoft  2017). 
Additionally, the insoluble enzyme granule-bound starch 
synthase (GBSS) primarily synthesizes amylose (Denyer 
et  al.  2001). In  Arabidopsis, the PROTEIN TARGET-
ING TO STARCH (PTST) interacts with GBSSI’s cata-
lytic domain to localize it to the starch granule (Seung 
et  al.  2015). SBEs facilitate branched starch synthesis 
and reducing the activity of SBEI and SBEII results in up 
to 56% increase in amylose content, reduced branched 
starch, and an increase in long-chain starch molecules 
(Tetlow and Emes 2014).

In starch degradation, glucose and maltose are the two 
primary final products, involving reversible glucan phos-
phorylation and hydrolysis pathways (Lorberth et  al. 
1998; Ritte et  al. 2002; Ritte et  al.  2006). Phosphoglu-
can, water dikinase (PWD), contrasts with glucan, water 
dikinase (GWD) by phosphorylating the C3 position of 
starch residues, whereas GWD targets the C6 position 
(Baunsgaard et  al.  2005; Hejazi et  al.  2010). Amylopec-
tin’s crystalline layers are progressively degraded through 
phosphorylation and dephosphorylation by phosphory-
lases and phosphatases, respectively, exposing new layers 
for degradation. Debranching enzyme (DBE) is crucial for 
hydrolyzing α-1,6 branch points in amylopectin (Delatte 
et  al.  2006) and DBEs are categorized into ISAs (ISA1, 
ISA2, ISA3) and LDA based on amino acid sequence and 
substrate specificity (Møller et al. 2016). ISA1 and ISA2 
are directly involved in amylopectin synthesis, while 
ISA3 and LDA participate in starch degradation (Delatte 
et al. 2006). GWD, PWD, SEX4, and DBE contribute to 
breaking down amylopectin into glucans.
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For amylose, characterized by linear chains, beta-
amylase (BAM) releases maltose from the non-reducing 
ends of exposed chains (Scheidig et al. 2002). The short-
est chains BAM can identify are maltotetraose, and dis-
proportionating enzyme (DPE) transfers maltosyl groups 
from maltotriose, formed during starch degradation, to 
other glucans, producing free glucose and longer glu-
cans for BAM metabolism (Asatsuma et al. 2005). Finally, 
glucose and maltose are transported from plastids to the 
cytoplasm for metabolism, facilitated by specific trans-
port proteins (Fig.  5, Thorens and Mueckler  2010; Niit-
tylä et al. 2004).

Beyond starch, potatoes contain notable levels of small 
sugars like glucose, fructose, and sucrose, which typically 
diminish as tubers develop (Navarre et  al.  2013). These 
sugars contribute to intracellular energy metabolism, 
serving as ATP carriers and interacting with starch syn-
thesis and degradation.

Starch metabolism regulation
The content of starch and the ratio of amylopectin to 
amylose significantly influence the starch’s final struc-
ture, growth, development, and physicochemical proper-
ties, such as gelatinization, which are crucial for starch 

processing and applications. Sucrose in storage tissues 
originates from phloem unloading, and studies indicate 
that the relationship between sucrose supply and diur-
nal metabolic fluctuations is not directly proportional 
to starch synthesis in tubers. Instead, enzyme activities 
in the starch synthesis pathway are key determinants 
of tuber development (Zrenner et  al.  1995). Enhancing 
SuSy activity in tubers boosts levels and total yields of 
starch, ADP-glucose, and UDP-glucose (Baroja-Fernán-
dez et  al.  2009). CRISPR/Cas9-induced mutations in 
branching enzyme (SBE) genes in tetraploid potatoes 
increase the amylose content and elongate branched 
starch chains (Zhao et  al.  2021); similarly,  SBEII  over-
expression enhances short-chain branching in starch, 
altering the physicochemical properties of potato tuber 
starch, aiding in its processing and production (Brum-
mell et  al.  2015). CRISPR/Cas9-mediated  GBSS1  muta-
tions result in reduced or completely eliminated amylose 
in some transgenic tubers (Toinga-Villafuerte et al. 2022). 
Somaclonal variant Ros 119, identified through breed-
ing, exhibited a 42 and 61% increase in fresh and dry 
tuber weights, respectively, due to the upregulation of six 
starch synthesis genes: AGPase, GBSSI, SBEI, SBEII, SSII, 
and SSIII (Adly et al. 2023).

Fig. 5  Starch metabolism pathway in potato source (A) and sink tissues (B). A F6P produced by photosynthesis in chloroplasts generates 
substrates for starch synthesis, ADP-Glu, through the enzymatic reactions of PGI, PGM and AGPase. SSs, GBSSs, SBEs, and DBEs continuously 
elongate into amylose and amylopectin. GWD, PWD, and SEX4 phosphorylate and dephosphorylate starch particles, increasing the water solubility 
and promoting starch degradation. DBEs are necessary for the degradation of branched starch. Amylose is hydrolyzed by BAMs to produce 
maltose, and then transported to the cytoplasm for metabolic utilization. B The substrate ADP-Glu for starch synthesis is synthesized in amyloplast. 
Sucrose derived from the unloading of the phloem is hydrolyzed by SUSy in cytoplasm to produce UDP-Glu and Fructose, which are then 
catalyzed by UGPase/PGM and FK/PGI to produce G6P, respectively. With the help of GPT, G6P enters the amyloplast to generate ADP-Glu by PGM 
and AGPase. Subsequent synthesis and degradation are similar to those in the above-ground parts. The yellow diamond represents sucrose, 
and arrows indicate the direction of sucrose transport
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Proteins influencing starch content and properties also 
play significant roles in starch metabolism. The knockout 
of StTST1  enhances tuber starch synthesis and curtails 
degradation under cold storage (Liu et al. 2023a, b). Dis-
rupting the expression of the vacuolar membrane glucose 
transporter  StTST3.1leads to cytoplasmic glucose accu-
mulation, which hinders starch degradation and results 
in maltose buildup, influencing transitory starch turno-
ver and potato plant growth (Liu et  al.  2023a, b). The 
ectopic expression of the  AtCDF1  transcription factor 
boosts starch and amino acid content, as well as yield in 
tubers under field conditions (Carrillo et al. 2023). Over-
expressing  StDREB1  yields tubers with greater weight 
than wild-type plants, affecting tuber quality in terms of 
dry matter, starch content, and reducing sugars in both 
greenhouse and field conditions (Chiab et  al.  2021). In 
developing tubers, SnRK1 and HXK1 stimulate post-
translational redox activation of AGPase via distinct 
sugar signaling pathways, modulating starch synthesis 
rates and ensuring suitable sucrose availability (Tiessen 
et al. 2003). In addition, starch synthesis in potato tubers 
is governed by redox modification of AGPase, clarify-
ing the link between starch synthesis and sucrose supply 
(Tiessen et al. 2002). Thus, the starch metabolism regu-
latory network encompasses targeted metabolic enzyme 
gene edits, indirect signaling pathways tied to environ-
mental and developmental factors, and feedback mecha-
nisms involving small molecule sugars and starch, likely 
integral to sugar signaling.

Other storage substances
Potato tubers contain small amounts of other nutrients 
beneficial to human health. Potato proteins, which make 
up 1–2% of tuber fresh weight, with patatins account-
ing for 40% of this storage protein (Shewry 2003). Potato 
protein comprises 19 amino acids, with asparagine being 
the most prevalent (Zhu et  al.  2010), making potatoes 
one of the richest protein sources among root and tuber 
crops (FAO, 2008). Transgenic potatoes overexpress-
ing the seed protein AmA1 exhibited a 60% boost in 
total protein content and significant increases in total 
biomass and several essential amino acids (Chakraborty 
et al. 2010). Lipids constitute about 0.1% of potato fresh 
weight (Galliard  1973), with up to 90% of fatty acids 
being linolenic and linoleic acids, essential unsaturated 
fatty acids for human nutrition, alongside palmitic acid 
(Ramadan and Oraby  2016). Other bioactive lipid com-
pounds like glycolipids, phospholipids, sterols, tocols, 
and carotenoids serve as cell membrane components 
or antioxidants. Though the total lipid content is low, 
overexpressing  WRI1, DGAT1, and OLEOSIN  have sig-
nificantly increased TAG accumulation, phospholipids, 

and galactolipids, albeit with a reduction in starch con-
tent and an increase in soluble sugars (Liu et  al.  2017). 
Upregulation of the 14–3-3 protein in transgenic tubers 
can augment total lipid content by up to 69% (Prescha 
et al. 2001).

Compared with other food crops, potatoes have the 
most comprehensive vitamin content, with vitamin C 
being particularly abundant as well as several B vitamins 
(Augustin 1975; Brown 2005; Zaheer and Akhtar 2016), 
and critical minerals in human diets (Brown  2008). 
Research on functional genes related to vitamin con-
tent is scarce, with studies focusing on optimizing 
vitamin retention across various cooking methods (Fur-
rer et  al.  2018). Dietary fiber, mainly found in potato 
skins, comprises about 1–2% of the potato’s dry weight 
(Kolasa  1993). Potassium is the most abundant mineral 
in potatoes, followed by phosphorus and calcium, with 
fresh weight (FW) ratios of 564, 30–60, and 6–18 mg/g, 
respectively (Buckenhuskes 2005).

Similar to dietary fiber, potassium is predominantly 
found in the potato’s flesh, making whole potatoes, with 
their skins, nutritionally superior (Camire et  al.  2009). 
Secondary metabolites and small molecule substances 
in potatoes include glycoside alkaloids, protease inhibi-
tors, lectins, phenolic compounds, chlorophyll, and 
anthocyanins. Notably, glycoside alkaloids, natural toxins 
produced during tuber germination, serve as a defense 
mechanism against various threats and are primarily 
concentrated in the potato skin, especially in the sprout-
ing areas (Furrer et  al.  2018). Despite their significance, 
research on these valuable, albeit small in quantity, stor-
age materials in potato tubers remains limited. Future 
efforts should focus on leveraging these nutrients to 
enhance the potato’s status as a "natural nutrition plant".

Overall, potatoes are favored for their high energy and 
low-fat profile, appealing to health and fitness enthusi-
asts. Their diverse nutrient content can satisfy nearly all 
human nutritional requirements, enhancing and breed-
ing potato varieties rich in nutrients is becoming increas-
ingly crucial.

Biotic and abiotic stress
Biotic stress
As potato cultivation expands and distribution regions 
diversify, coupled with global environmental changes 
and other factors, potatoes are increasingly facing vari-
ous biological stresses. Potato cultivation is affected by 
three major types of biological diseases: early blight and 
late blight caused by oomycetes (Adolf et al. 2020), bac-
terial wilt and ring rot caused by bacteria (Charkowski 
et al. 2020), and infections by various viruses and viroids 
(Kreuze et  al.  2020). Understanding how diseases work 
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and their molecular mechanisms is vital for controlling 
them efficiently and potato late blight and potato Y virus 
have been extensively examined (Fig. 6).

Potato late blight
Potato late blight, caused by the oomycete pathogen Phy-
tophthora infestans, led to the Great Famine in Ireland and 
remains a major global threat to potato crops (Kamoun 
et  al.  2015). In addition to infections, potatoes experi-
ence secondary infections after initial infection, lead-
ing to tuber rot and rendering them unusable (Dong and 
Zhou 2022). The economic impact of late blight diseases 
is substantial, with annual losses estimated between 3 and 
10 billion USD (Kamoun et al. 2015).P. infestans, as one of 
the most economically and scientifically significant plant 
pathogenic oomycetes, has been the subject of extensive 
molecular mechanism studies (Kamoun et al. 2015).

The relationship between potatoes and P. infestans aligns 
with the classic “zig-zag” model of plant immunity (Jones 
and Dangl 2006), which describes how plants use two types 
of immune receptors, those on the plasma membrane and 
those within the cytoplasm, to detect pathogens such as 
bacteria and oomycetes, initiating immune responses.  P. 
infestanssecretes structurally conserved elicitor proteins 
called elicitins (ELIs) (Jiang et  al.  2006), which bind to 

sterols, aiding oomycete growth (Derevnina et al. 2016). P. 
infestansencodes six conserved elicitin proteins (Jiang 
et al. 2006; Cooke et al. 2012). Through map-based clon-
ing, a receptor-like protein (RLP) ELICITIN RESPONSE 
(ELR) from wild potatoes was isolated; the extracellular 
domain of ELR recognizes the conserved domain of elic-
itins (Du et  al.  2015). Because RLPs lack a cytoplasmic 
signaling domain, they form heterodimers with SUPPRES-
SOR OF BIR1-1 (SOBIR1) to participate in the immune 
responses (Gust and Felix  2014). The kinase activity of 
SOBIR1 is necessary for plant immunity triggered by elic-
itins, such as INF1 (Domazakis et  al.  2018). Upon INF1 
stimulation, ELR forms heterodimers with SOBIR1 and 
then recruits BAK1, thereby activating downstream signal-
ing (Du et al. 2015; Domazakis et al. 2018). Similar to the 
PTI pattern in Arabidopsis, elicitins induce potato ELR to 
detect elicitins and form trimers with SOBIR1 and BAK1, 
eliciting a PTI immune response to resist the invasion of P. 
infestans.

Other receptor-like kinases (RLKs) have been identi-
fied to enhance the resistance of potatoes to P. infestans. 
Research on STRUBBELIG-RECEPTOR FAMILY (SRF) 
homologous genes in potatoes indicated that StL-
RPK1 is significantly induced following infection by P. 
infestans  (Wu et  al.  2009). Overexpression ofStLRPK1 

Fig. 6  Potato immunity responses against P. infestans (A) and potyvirus (B). A Ligands secreted by P. infestans bind to pattern recognition receptors 
(PRRs), triggering immune complex formation and downstream kinase phosphorylation. StMAPKs cascades are phosphorylated to activate 
related transcriptional factors and induce ROS burst. To combat PTI immunity, P. infestans secrete various AVRs to aim specific protein targets. 
For endomembrane trafficking: AVR1 to Sec5, PexRD54 to ATG8CL, AVR3a to DRP2. For protein degradation: AVR3a to CMPG1, AVR8 to StDeSI2, 
and Pi02860 to NRL1, SWAP70. For StMAPK kinase activity, both PexRD2 and Pi22926 are involved. AVR2 interacts with StBSL1 to induce StCHL1. 
PiSF13 targets StUBK to reduce immunity responses. B Once potyvirus enters the plant cell through insect media, the coat protein (CP) is recognized 
and bound by a TIR-NLR immune receptor (e.g. Rysto), and downstream responses are induced. The VPg binds to the initiation factor eIF4E to initiate 
viral transcription. eIF4E variants can escape interaction and improve resistance. Viruses spread through plasmodesmata with the help of TGBp1. 
Under virus invasion, StREM promotes callose deposition and inhibit TGBp1 function
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enhances resistance to P. infestans, with the interaction 
between StLPRK1 and BAK1 playing a crucial role in the 
potato’s defensive response against P. infestans  (Wang 
et al. 2018). In Arabidopsis, L-type lectin receptor kinase-
I0.9 (LecRK-I0.9) kinase can recognize and combat Phy-
tophthora  infections (Senchou et al. 2004; Bouwmeester 
et al. 2011). The extracellular lectin domain of LecRK-I0.9 
binds to the RGD tripeptide motif of the IPI-O effec-
tor released byP. infestans  to transmit signals and initi-
ate downstream immune responses (Gouget et al. 2006). 
The  Arabidopsis lecrk-I.9 mutant exhibits strong sen-
sitivity to P. infestans, and overexpressing AtLecRK-
I0.9  enhances the plant’s resistance to oomycetes 
(Bouwmeester et al. 2011). Further overexpressing Arabi-
dopsis LecRK-I.9 in potato substantially increased the 
resistance to P. infestans  (Bouwmeester et  al.  2014). 
The  StLecRK-IV 0.1 gene was considerably significantly 
downregulated in P. infestans infection, and silencing 
StLecRK-IV.1 in potato reduced the infection plaque of P. 
infestans (Guo et al. 2022). Molecular studies have iden-
tified an interaction between StLecRK-IV.1 and StTET8, 
and coexpression of  StLecRK-IV.1 and StTET8  can dis-
rupt the stability of StTET8 and reduce resistance to 
late blight (Guo et  al.  2022). Recently, Pep-13 recep-
tor unit (PERU) was isolated from wild potato varieties, 
which can recognize small peptides Pep13 secreted byP. 
infestans. Binding of PERU to Pep13 facilitates the for-
mation of a PERU-BAK1 complex, triggering an immune 
response and enhancing immunity to P. infestans (Torres 
Ascurra et al. 2023).

RLKs help transmit signals from the outside to the 
inside of plant cells, activating plant PTI responses. 
These processes involve increased ROS production and 
MAPK kinase activation. Potatoes’ MAPKs play a role 
in resisting infection of P. infestans (Majeed et al. 2022). 
An MAPK cascade involving StMEK1-StMPK1/StWIPK 
has been identified in response to  P. infestans  (Yamam-
izo et al. 2006). Overexpressing StMEK1 stimulated StR-
BOHC and StRBOHD peroxidase activities, increased 
ROS levels, resulting in enhanced resistance to P. 
infestans  (Yamamizo et  al.  2006). StMPK7 is phospho-
rylated by StMKK1 to regulate the immune response 
to P. infestans (Zhang et al. 2021b). The StLRPK1-BAK1 
complex can transmit downstream signals to MEK2 and 
WIPK, components of the MAPKs cascade, to activate 
PTI immunity (Wang et al. 2018).

When pathogens infect potatoes, they secrete effec-
tors into plant cells to suppress immune responses 
and enhance the success rate of infection (Jones and 
Dangl  2006). The effectors from  P. infestans  mainly fall 
into two categories: crinkler (CRN) and RxLR (Kamoun 
et al. 2006). The genome of P. infestans encodes over 500 

RxLR effectors, with diversity in sequence and expression 
across strains (Haas et  al.  2009; Anderson et  al.  2015). 
The study of effectors is widely considered key to under-
stand the disease-transmitting mechanism of oomycetes. 
Effectors specifically target various proteins in host plant 
cells, thereby altering the stability, activity, or subcel-
lular localization of target proteins and interfering with 
the normal immune response of plants (He et al. 2020). 
Potatoes have evolved resistance (R) genes to counter 
effectors, triggering strong ETI immune processes. These 
effectors, recognized by  R  genes, are named avirulence 
proteins (AVRs, Vleeshouwers et al. 2011). The main pro-
teins like AVR1, AVR2, AVR3a, AVR4, AVR8, AVRblb1, 
AVRblb2, PexRD12/31, have been identified and their 
functions are continually being studied (Vleeshouwers 
et al. 2011; Monino-Lopez et al. 2021).

AVR1 interacts with Sec5, an exocyst component, 
stabilizing it and disrupting the secretion of patho-
genesis-related protein-1 (PR1) and callose deposi-
tion (Du et  al.  2015b). Stable Sec5 interferes with 
vesicular transport to inhibit normal immune response 
(Du et al. 2015b). AVR2 interacts with BSL1 (BSU-LIKE 
PROTEIN1), which is required for R2 protein’s recog-
nition of AVR2 and resistance (Saunders et  al.  2012). 
AVR2 serves as a crosstalk between BR and immune 
signals. The bHLH transcription factor StCHL1 is 
induced under both BR and AVR2 conditions (Turn-
bull et al. 2017) and simultaneous expression of StCHL1 
and AVR2inhibits plant INF1-indcued immunity (Turn-
bull et  al.  2017). AVR3a is the first cloned and isolated 
effector of  P. infestans  (Armstrong et  al.  2005), which 
inhibits INF1-mediated cell hypersensitivity by binding 
to and stabilizing an E3 ubiquitin ligase CMPG1 (Bos 
et  al.  2010). In addition, AVR3a interacts with GTPase 
Dynamin-Related Protein 2, which mediates receptor 
protein endocytosis, thereby inhibiting ROS bursts trig-
gered by PTI immunity (Chaparro-Garcia et  al.  2015). 
The different targets of AVR3a indicate that AVR3a can 
inhibit PTI signals in various ways. AVR8 binds to and 
degrades potato desumoylating isopeptidase 2 (StDeSI2), 
through 26S proteasomes, thereby attenuating PTI 
responses (Jiang et  al.  2023). Continuous research on 
the identification of effectors and their mechanisms can 
significantly broaden the knowledge on the plant-path-
ogen interaction network. For instance, PexRD54 effec-
tor binds to the autophagy-associated protein ATG8CL 
(Dagdas et  al.  2016), mimicking the starvation-induced 
autophagy to break the balance of endomembrane traf-
ficking at the pathogen interface (Pandey et  al.  2021). 
Pi02860 effector binds to the E3 ubiquitin ligase NPH3/
RPT2-LIKE1 protein (NRL1) to enhance the interaction 
between NRL1 and a guanine nucleotide exchange factor 
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called SWAP70, promoting SWAP70 degradation and 
suppressing immune responses (He et al. 2018). Pi04314 
effector interacts with protein phosphatase 1 catalytic 
(PP1c) isoforms, attenuating immunity responses by 
changing their localization (Boevink et al. 2016). PiSFI3/
Pi06087/PexRD16 effector interacts with a U-box-kinase 
protein (StUBK) to suppress the UBK-related PTI immu-
nity response (He et  al.  2019). Pi22926 and PexRD2 
target MAPKKK kinase to inhibit the kinase activity, 
thereby subverting plant immunity (King et al. 2014; Ren 
et al.  2019).

The integration of genomics, proteomics, and micros-
copy has substantially advanced our understanding of 
effectors’ biological functions. Using core RXLR effector 
factors, protein mass spectrometry identified proteins 
interacting with effectors, constructing a effector-host 
protein interaction network (Petre et al. 2021). Extensive 
interactions between RXLR effectors and vesicular trans-
port system components highlight the crucial role of 
vesicular transport in the relationship between Phytoph-
thora and plant cells (Petre et  al. 2021). Previous stud-
ies on effector entry into cells suggested that the RXLR 
motif ’s high sequence conservation with plant proteins 
might allow effectors to perform similar functions and 
evade the plant immune system (Birch et al. 2008). Inhib-
iting endocytosis-related proteins reduced Phytophthora 
infection efficacy and effector translocation into cells 
(Wang et  al. 2023a, b). These results demonstrate that 
RXLR effectors enter cells through clathrin-mediated 
endocytosis.

The findings of immune studies in Arabidopsis indicate 
that immune responses in potatoes also conform to the 
“zig-zag” model (Jones and Dangl 2006). The identifica-
tion of other homologous pattern recognition receptors, 
ELR and PERU, in potatoes establishes a solid founda-
tion for delineating PTI immune pathways and exploring 
additional signaling components to enrich the pathway 
(Du et  al. 2015a; Torres Ascurra et  al. 2023). Current 
research in ETI immunity mainly focuses on elucidat-
ing the mechanisms of RxLR effectors actions and their 
target proteins (Anderson et al. 2015), while an increas-
ing number of molecular mechanisms underlying effec-
tor-target interactions are being uncovered. Research 
methodologies are advancing toward greater efficiency, 
diversity, and comprehensiveness, transitioning from 
analyzing single effector-target interactions to exploring 
multi-target interactions and conducting omics analyses 
of multiple effectors, which is expected to reveal novel 
effector mechanisms, enriching our understanding of 
molecular mechanisms in potato disease resistance and 
offering valuable insights into disease-resistant potato 
breeding.

Potato virus disease, PVY
Viruses represent a substantial threat to the normal 
growth, harvesting, and sowing of potatoes. Over time, 
plants intricate monitoring mechanisms to identify and 
counteract viral invaders. They use diverse approaches, 
including RNA silencing, transcriptional inhibition, 
and R  gene-mediated defense, to resist viruses (Soosaar 
et  al. 2005). Globally, potatoes are susceptible to over 
fifty viral species (Kreuze et  al. 2020), with six major 
threats:  Potato virus Y (PVY), Potato virus X (PVX), 
Potato virus S (PVS), Potato virus A (PVA), Potato leaf-
roll virus (PLRV), and Potato virus M(PVM) (Wang et al. 
2011), among which PVY have caused severe economic 
losses in the potato industry over the past three decades, 
making it a focal point of research (Kreuze et al. 2020).

Exploring resistance genes is a key strategy in combat-
ing PVY. The R and N genes are two types of PVY resist-
ance genes in potatoes (Valkonen et al. 1996). The N gene 
triggers a hypersensitive resistance response (HR) in 
potatoes and exhibits strain specificity (Singh et al. 2008). 
Specific  N genes, such as Ny, Nc, and Nz, confer resist-
ance to different PVY strains: PVYO, PVYC, and PVYZ, 
respectively (Singh et  al. 2008). HR results in localized 
leaf necrosis, preventing virus from spreading to other 
plant tissues, although it does not completely stop virus 
replication. Conversely, the extreme resistance (ER) 
response triggered by the R gene offers broad-spectrum, 
strong, and long-lasting resistance (Baebler et  al. 2020). 
ER inhibits virus proliferation in the early stages of virus 
infection, resulting in minimal signs of infection in leaves 
(Ross et  al. 2021). Currently, 10 PVY disease resistance 
genes have been identified in potatoes, with few members 
cloned and studied. The Rysto  gene encodes a TIR-NLR 
immune receptor and stable expression of Rysto  protein 
in two Solanaceae plants, potato and tobacco, effectively 
limited the transmission of PVY and PVA viruses (Grech-
Baran et al. 2020). Rysto directly binds to the coat protein 
(CP) of PVY virus, exhibiting ER resistance. Given the 
conservation of virus CP proteins, Rysto  is speculated to 
recognize at least 10 significant viruses (Grech-Baran 
et al. 2022).

The eIF4E initiation factor is a crucial resistance pro-
tein in potatoes. eIF4E binds to viruses and exerts its 
effects through transcription pathways, and most clones 
of recessive resistance genes are variants of eIF4E or its 
isoforms (Truniger and Aranda  2009; Wang and Krish-
naswamy  2012). Potato viruses use eIF4E to synthesize 
their proteins; however, isoforms of eIF4E can evade viral 
manipulation, contributing to resistance (Sanfaçon 2015). 
Numerous eIF4E variants exist in the natural population 
and overexpression of  eIF4E  can substantially enhance 
the potatoes resistance to viruses without adversely 
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affecting normal crop growth (Gutierrez Sanchez et  al. 
2020).

In addition to using resistance genes, potatoes employ 
a strategy of restricting virus spread as a key defense 
mechanism against viral infection. This is an active area 
of research in plant-virus interaction. Plasmodesmata 
(PD) serve as vital channels between adjacent plant cells, 
enabling short-distance signaling transmission and mate-
rial exchange (Lucas and Lee 2004). They also facilitate 
the movement of viruses (Liu et  al. 2021). REMORIN 
(REM) proteins, associated with plant plasma membrane 
(PM), are integral to the PD-PM subcompartment and 
involved in virus cell-to-cell movement (Raffaele et  al. 
2009). Overexpression of  StREM1.3  limited the dilation 
effect of triple gene block proteins1 (TGBp1) on PD (Per-
raki et al.  2014). When infected with PVX, the viral coat 
protein and TGBp1 interact with REM1.3, leading to its 
phosphorylation. This phosphorylation triggers callose 
deposition at PD, reducing their permeability and thus 
hindering viral spread (Perraki et al. 2018).

The detrimental effects of potato viruses on crop health 
and yield are substantial, making the identification of 
resistance genes a crucial aspect. Although numerous 
PVY resistance genes have been mapped, only few have 
been cloned and applied. As sequencing technologies and 
microscopic techniques continue to evolve, the identifi-
cation and characterization of virus resistance genes and 
their underlying mechanisms are expected to accelerate, 
which will enhance our understanding of potato virus 
diseases and support the development of new potato 
varieties with effective resistance to viral pathogens, 
offering more suitable solutions for combating these agri-
cultural challenges.

Abiotic stress
Abiotic stresses including high temperature, drought, 
mineral deficiencies or toxicities, salinity, and low tem-
perature, significantly affect the normal growth of pota-
toes (Fig.  7, Demirel 2023). Currently, related research 
mainly focuses on gene function identification, highlight-
ing the necessity for a deeper understanding of the spe-
cific molecular mechanisms of related genes.

Low temperature
Potatoes thrive in cool environments but are vulner-
able to frost and freezing, which detrimentally affect 
their yield and quality (Simon 1993). Low temperatures 
primarily damage cell membranes and hinder photo-
synthesis and other physiological processes (Guan et  al. 
2023). Transcriptome sequencing of the diploid wild spe-
cies  S. commersonii under low temperature conditions 
revealed the upregulation of numerous genes, including 
known cold stress-related genes such as INDUCER OF 

CBF EXPRESSION 1 (ICE1) and CBF3  (Aversano et  al. 
2015). In addition, analysis combining transcriptomics 
and metabolomics demonstrated an increased expres-
sion of  StADC1  under low temperature stress, leading 
to elevated putrescine levels (Kou et  al. 2018). Both the 
exogenous application of putrescine and overexpression 
of StADC1 activated StCBF transcription activity, thereby 
enhancing the cold resistance of potatoes (Kou et  al. 
2018). Overexpression of  StCBF3 in Arabidopsis  con-
siderably improved its tolerance to low temperature (Li 
et al. 2018). In cold-tolerant potato speciesS. acaule, the 
expression of SaMKK2 was particularly increased, and 
SaMKK2 interacted with SaMAPK4/7, promoting the 
expression of CBFs and SLD2  and thus enhancing the 
resistance of potatoes to cold stress (Chen et al. 2022).

High temperature
As a cool-loving crop, potatoes are susceptible to heat 
stress, which substantially affects their growth, develop-
ment, and tuber formation process, eventually leading 
to decreased tuber yield and quality (Lafta and Lorenzen 
1995). Previous studies have examined the role of StSP6A 
in the photoperiod regulation of tuber formation, while 
transcription data analyses have revealed a substantial 
decrease in  StSP6A  expression under high tempera-
ture conditions (Hancock et al. 2014; Morris et al. 2019; 
Lehretz et  al. 2019), revealing its unexpected function 
under heat stress. Research showed that the core clock 
protein TIMING OF CAB EXPRESSION1 (StTOC1) 
acts as a temperature-responsive transcription factor, 
inhibiting  StSP6A  expression under high temperature 
conditions (Hancock 2014; Morris et  al. 2019). Silenced 
expression of StTOC1 caused an increased transcription 
of StSP6A, thereby increasing tuber yield under high tem-
perature conditions (Morris et  al. 2019). Furthermore, 
high temperature conditions lead to the induction of SES, 
which reduces the expression of StSP6A  (Park et  al. 
2022). By contrast, interference with SES can increase 
the tuber yield of potatoes under high temperatures (Park 
et al. 2022).

Transcriptome analysis revealed the presence of 
numerous heat stress-related genes in potatoes. A study 
examining the response of 18 potato varieties to heat 
stress found that the dormancy-related genes DELAY OF 
GENEATION 1 (DOG1) and SUBTILISIN-LIKE PRO-
TEASE (SLP) were significantly downregulated (Zhang 
et al. 2021a). Heat stress treatment led to the enrichment 
of the GA biosynthesis pathway, suggesting the involve-
ment of GA in heat sprouting and dormancy changes 
in tubers (Zhang et al. 2021a). Moreover, transcriptome 
analysis in potato leaves demonstrated an increase in the 
expression of the heat shock proteins StHsp26-CP and 
StHsp70 (Tang et al. 2020).
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Salinity
Because of excessive fertilizer and pesticide usage in 
agriculture, and intensive land utilization, soil saliniza-
tion is becoming increasingly prevalent, especially in arid 
regions where reduced precipitation and soil moisture 
evaporation exacerbate the issue. Salt stress inhibits the 
growth of potato, leading to decreased yields. However, 
potatoes have developed various ways to cope with salin-
ity (Chourasia et al. 2021).

ABA plays a crucial role in potato resistance to salt 
stress. Under salt stress, dehydration responsive ele-
ment binding protein (StDREB2) is rapidly induced 

through the ABA signaling pathway, and StDERB2 
overexpression led to increased tolerance to salt stress 
(Bouaziz et  al. 2012). Similarly, potatoes with heter-
ologous expression of AtDREB1A  showed an increase 
in salt resistance (Behnam et  al. 2006). Applying BRs 
during potato growth can increase the proportion of 
K + /Na + ions in the tissue and improve salt tolerance 
(Hu et al. 2016). Overexpression of StDWF4 enhanced 
BR biosynthesis and thus salt tolerance in potatoes 
(Zhou et  al. 2018). Heterologous expression of  Arabi-
dopsis high-affinity potassium transporter 1 (AtHKT1) 
in potatoes increased the intercellular K + /Na + ratio, 
improved water utilization efficiency, and reduced 

Fig. 7  Regulatory network of cold (A), heat (B), salt (C) and drought (D) stresses in potatoes. A The upregulated ICE1 and ADC1 promote 
transcriptional activity of StCBFs under cold stress. MAPKs kinase activities are activated to promote StCBFs and SLD2 expression. B Under heat stress, 
induced SES and StTOC1 downregulate StSP6A. Heat suppresses the transcriptions of DOG1 and SLP while promotes that of StHsps. C Under salt 
stress, ABA plays a crucial role by upregulating DREBs. BRs, StDWF4 and StBBX24 promotes salt stress-related genes and enhances resistance to salt. 
D Under drought, ABA and MAPKs are induced and ABA activates SnRKs kinase activity. Transcription factors (e.g., NF-Ys and MYBs), StPIP1, StDRO1, 
and StCIPKs are also involved in drought response
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the transpiration rate, effectively increasing salt tol-
erance (Wang et  al. 2019). BBX, a type of B-box zinc 
finger protein, also known as CO is a well-studied pro-
tein controlling flowering (Abelenda et  al. 2016). Sup-
pressed expression of StBBX24 led to greater sensitivity 
to salt stress, whereas its overexpression resulted in a 
salt-tolerant phenotype (Kiełbowicz-Matuk et al. 2022).

Drought
Potatoes can provide more nutrients than other major 
crops under the same water-use conditions (Renault 
and Wallender 2000). However, their root structure 
leads susceptibility to drought stress (Monneveux 
et al. 2013). ABA plays a crucial role in potato drought 
resistance, which regulates stomatal movement, affects 
the distribution of dry matter and potato yield (Liu 
et  al. 2005). Moderate drought condition increases 
ABA levels in potato roots, leaves, and stolons, promot-
ing tuber formation and increasing potato weight (Xu 
et  al. 1998). Sucrose nonfermenting 1-related protein 
kinases 2 (SnRK2) subfamily genes are mainly activated 
in response to abiotic stress. In the presence of ABA, 
activated SnRK2s phosphorylate downstream tran-
scription factors, regulating the expression of down-
stream response genes and thus improving drought 
resistance (Chen et  al. 2020). The expression level 
of StSnRK2  family genes was substantially upregulated 
under drought stress, and the stable transformation of 
StSnRK2 in tobacco resulted in stronger drought resist-
ance (Yao et al. 2023).

MAPKs also play a significant role in drought stress, 
beyond their function in biotic stress. Drought con-
ditions substantially upregulated the expression of 
StMAPK11, enhancing the antioxidant activity of pota-
toes and drought resistance through photosynthesis 
(Zhang et al. 2021a, b). Moreover, a study identified 22 
drought-responsive genes across different potato spe-
cies, with MAPKKK15 showing substantial upregu-
lation at the transcriptional level under water deficit 
condition (Pieczynski et al. 2018).

Various transcriptional factors play roles in response 
to drought stress. Nuclear factor Y (NF-Y) is a com-
mon family of transcription factors in eukaryotes 
and StNF-A7 enhances drought tolerance by reduc-
ing leaf water loss (Na et  al. 2017). Overexpression 
of  StNF-YB3.1  promoted ABA-mediated stomatal 
closure, leading to a decrease in tuber yield (Xuany-
uan et  al. 2017). OverexpressingStNF-YC9increased 
potato tolerance to water deficiency by enhanc-
ing photosynthesis and antioxidant enzyme activ-
ity (Li et  al. 2021). The MYB gene family, comprising 
233 genes in potatoes, is predominantly activated 
under drought stress (Li et  al. 2019).  StMYB1R-1 was 

identified as a stress-response gene and overexpres-
sion of StMYB1R-1  improved drought tolerance and 
enhanced drought-regulated gene expression (Shin 
et al. 2011). Overexpressing StMYB33 improved potato 
drought resistance through regulating ABA signaling 
pathway (Wyrzykowska et  al. 2022). Overexpression 
of AtDREB1A improved drought resistance, marked by 
increased activities of superoxide dismutase, catalase, 
and peroxidase (Jia et al. 2016).

Overexpression of AtYUCCA6  reduced water loss, 
enhancing drought resistance and reducing ROS levels 
in potato leaves (Kim et  al. 2013). The  DEEPER ROOT-
ING 1 (DRO1) regulates grain yield and root system 
under drought condition in rice (Uga et  al. 2013) and 
the potato homologous gene  StDRO1 affects the root 
structure and restores the tolerance of Atdro1to drought 
(Sun et  al. 2022a, b). Similarly, overexpressing  StPIP1, a 
potato water channel plasma membrane intrinsic protein, 
improved drought resistance by maintaining photosyn-
thesis, stomatal conductance, and water use efficiency 
(Wang et al. 2017). Under ABA and drought conditions, 
the expression of StCIPK10 significantly increased, which 
contributes to the enhancement of ROS scavenging and 
accumulation of osmolytes, aiding in the adaptation to 
drought stress of potatoes (Ma et al. 2021a, b).

Compared with Arabidopsis, studies on abiotic stress 
in potatoes have not yet established a relatively complete 
regulatory network. This gap is partly determined by the 
inherent characteristics of potatoes. The tolerance to envi-
ronmental factors and related impact are both worth to be 
analyzed with the widespread application of multi-dimen-
sional omics, a comprehensive understanding of relation-
ship among various environmental factors is expected, 
which can be efficiently applied in potato molecular 
breeding to address global environmental threats.

Application of biotechnology in potato trait improvement
Due to the significant edible and economic value of 
potatoes, enhancing their traits has always been a focal 
point for researchers. However, the complexity of breed-
ing is heightened by the tetraploid nature, high genetic 
heterozygosity, limited genetic diversity, and intricate 
genetic architecture of key traits in most cultivated pota-
toes, making traditional breeding laborious and ineffi-
cient. Genetic engineering offers a remedy by enabling 
the integration of one or more foreign genes into the 
plant genome, thereby inducing targeted genetic modi-
fications without altering the overall genetic makeup. 
This approach addresses the limitations of conventional 
breeding, like extended cycles and inefficiency, present-
ing a novel pathway for developing new varieties. Since 
the initial introduction of a transgenic potato plant via 
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Agrobacterium tumefaciensin the 1980s (Ooms et  al. 
1986), this technology has significantly advanced potato 
breeding. It facilitates the incorporation of genes that 
bolster resistance to pathogens and pests, enrich nutri-
tional profiles by boosting levels of proteins, vitamins, 
carotenoids, and lipids, and minimize harmful substances 
like acrylamide and glycoalkaloids. Moreover, genetically 
modified potatoes have gained attention for their poten-
tial to produce modified starches, lipids, and recombi-
nant proteins, including pharmaceuticals and vaccines 
(Hameed et  al. 2018). A recent innovation by Mei et  al. 
introduced an effective planta transformation technique 
leveraging plants’ innate regenerative capabilities (Mei 
et  al. 2024). By injecting  A. tumefaciens  directly into 
plant meristems, transfected tissues are induced, with 
subsequent vegetative propagation yielding stable trans-
genic plants, which bypasses the need for tissue culture, 
offering substantially higher transformation efficiencies 
than conventional methods and has been successfully 
applied to potatoes. Currently, several genetically modi-
fied potato varieties have been commercialized, including 
the NewLeaf™ and NewLeaf Plus™ varieties developed by 
Monsanto® in the late 1990s for resistance to the Colo-
rado potato beetle and potato leafroll virus (PLRV) (Law-
son et al. 2001). Another example is the Innate® potato, 
developed by J. R. Simplot Company, which features 
reduced enzymatic browning and lower acrylamide levels 
when processed (Richael 2021). Most GM potato varie-
ties have been produced using transgenic and RNA inter-
ference (RNAi) techniques (Hameed et al. 2018; Richael 
2021).

In recent years, genome editing technologies have 
emerged as novel biotechnological approaches for crop 
breeding, garnering attention for their precision and 
efficiency in generating targeted genetic modifications 
to achieve desired traits (Baltes et  al. 2017; Chen et  al. 
2019; Zhu et  al. 2020a). Utilizing site-specific nucleases 
(SSNs) such as Zinc Finger Nucleases (ZFNs), Transcrip-
tion Activator-Like Effector Nucleases (TALENs), and 
the Clustered Regularly Interspaced Short Palindromic 
Repeats (CRISPR) along with CRISPR-associated pro-
teins (CRISPR/Cas), genome editing introduces pre-
cise genetic modifications. The detailed potato genome 
sequence and advanced transformation systems posi-
tion the potato as an ideal subject for genome editing to 
enhance traits essential for more sustainable production 
(Hameed et  al. 2018; Nadakuduti 2018). Since the ini-
tial demonstration of CRISPR/Cas9-mediated genome 
editing in potato in 2015 (Wang et al. 2015a), this tech-
nique has been leveraged in numerous studies to enhance 
traits of potatoes, including improving nutritional qual-
ity, modifying tuber starch composition, enhancing 
post-harvest quality, increasing biotic stress tolerance, 

and addressing reproductive self-incompatibility issues 
(Table 1).

Improving starch quality
Potato consists of amylose (about 20–30%) and amy-
lopectin (about 70–80%) and is a significant source of 
starch for both food and industrial applications (Fajardo 
et  al. 2013). The amylose/amylopectin ratio in tuber 
starch varies among cultivars but is typically around 
1:4. This ratio is crucial as it influences the physical and 
chemical properties of starch, affecting its suitability for 
various dietary and industrial uses (Zeeman et al. 2010). 
Recent advancements have utilized CRISPR/Cas system-
mediated genome editing to successfully modify starch 
composition in potatoes for diverse applications.

Amylose-free starch, particularly amylopectin, is used 
as an adhesive in the paper industry and as a thickening, 
bulking, or coating agent in the food industry. To produce 
potatoes with amylose-free starch or a high amylopectin/
amylose ratio, the GBSS1  gene responsible for amylose 
synthesis can be targeted. This gene has been disrupted 
using various methods, including antisense technology, 
RNAi, TALENs, and CRISPR/Cas9 (Visser et  al. 1991; 
Otani et  al. 2007; Andersson et  al. 2017; Kusano et  al. 
2018). To improve starch quality, (Andersson et al. 2017) 
targeted all the alleles of GBSS genes in tetraploid potato 
through the transient expression of CRISPR/Cas9 system 
in protoplasts. Three mutated lines were identified to har-
bor inserts of original plasmid. A regenerant identified 
from a specific transformation event contained all cop-
ies of the mutated GBSS1  gene. Moreover, starch from 
microtubers of this line exhibited the waxy phenotype 
(Andersson et al. 2017). Subsequently, CRISPR/Cas9 rib-
onucleoprotein (RNP) was used to target the GBSS gene 
for DNA-free genome editing. RNPs were produced syn-
thetically (cr-RNP) and in vitro (ivt-RNP), with mutation 
frequencies of 9% and 25%, respectively. All the mutated 
lines produced from cr-RNP were transgene-free, and 
mutations were induced in all four alleles, resulting 
in a complete knockout of the GBSS enzyme function 
(Andersson et al. 2018). Both studies have demonstrated 
that GBSS1 can be completely mutagenized through the 
delivery of RNPs or plasmid DNA into protoplasts and 
that transgene free waxy tubers can be obtained through 
the subsequent regeneration of potato plants. The effi-
ciency of CRISPR/Cas9 to target the  GBSS gene was 
enhanced using translational enhancer dMac3, and amyl-
ose-reduced lines were obtained using the CRISPR/Cas 
system for the stable transformation of Sayaka (Kusano 
et al. 2018).

In another study, substituting the AtU6 promoter with 
the endogenous potato U6 promoter to drive the expres-
sion of sgRNAs improved the efficiency of CRISPR/
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Cas9-mediated GBSSgene editing (Johansen et al. 2019). 
Toinga-Villafuerte et al. (2022) produced a stable knock-
out line of GBSS1 through the Agrobacterium-mediated 
transformation of a yellow potato cultivar Yukon Gold, 
which essentially had no detectable amylose in tubers. 
Additionally, the role of base editors causing specific and 
efficient nucleotide substitution can widen the scope of 
gene editing. It is demonstrated that DNA substitutions 
in the locus encoding the catalytic domain KTGGL of the 
potato GBSS, which was generated by cytidine base edi-
tor (CBE), were sufficient to produce a loss-of-function 
allele (Veillet et  al. 2019b). Two mutants, out of 48 sta-
ble regenerants, had an unusual C-17 to G-17 conversion 
in all alleles and had no other unintended mutations at 
the target site. This nucleotide substitution resulted in 
the L99V mutation in the KTGGL motif and the mutant 
microtuber lacked amylose.

Amylose-rich and digestion-resistant starch can 
be consumed as a healthier alternative to reduce 
calorie intake, improve insulin resistance, and pro-
mote gut health (Keenan et al. 2015). To increase the 
content of resistant starch in potatoes, studies have 
focused on reducing the activity of starch branching 
enzymes 1 and 2 (SBE1 and SBE2), which are crucial 
for inserting α-1,6 glycosidic bonds in amylopectin. 
RNAi and antisense RNA approaches substantially 
reduced SBE activity in tubers, resulting in starches 
that were high in amylose content and resistant 
to digestion (Schwall et  al. 2000; Andersson et  al. 
2006). Recent studies have used CRISPR/Cas9-medi-
ated mutagenesis to target  SBE  genes, producing 
transgene-free tubers rich in amylose and resistant 
starch. Tuncel et  al. (2019) targeted  SBE1, SBE2, or 
both genes through conventional Agrobacterium-
mediated transformation or PEG-mediated transient 
protoplast transfection to deliver CRISPR/Cas9 com-
ponents. Transgene-free potatoes with different lev-
els of long amylopectin chains and/or amylose were 
created. Mutants with a decrease in the SBE2 protein 
level alone exhibited increased normal amylopectin 
chain length and starch granule initiation, whereas 
those decreases in both SBEs displayed an extreme 
phenotype with reduced amylopectin branching 
during granule development. Another study using 
CRISPR/Cas RNP-method revealed that starches of 
lines with mutations in all the alleles editing SBE1 
and SBE2 were composed of amylose (> 95%) and had 
no detectable amylopectin (Zhao et  al. 2021). Both 
studies have indicated that the transient expres-
sion of sgRNA/Cas9 constructs and the delivery of 
RNP complexes to protoplasts are promising tools 
for producing transgene-free plants with mutations 
inSBE genes.

Reducing cold‑induced sweetening
To reduce sprouting and extend post-harvest shelf life, 
harvested potato tubers are commonly stored at low tem-
peratures (approximately 4  °C). However, during such 
storage, they often accumulate reducing sugars, such as 
glucose and fructose, due to starch conversion, a phe-
nomenon known as cold-induced sweetening (CIS) (Dale 
and Bradshaw 2003), which posing a significant chal-
lenge for the subsequent processing of potatoes. When 
subjected to high-temperature frying, the reducing sug-
ars undergo a non-enzymatic Maillard reaction with 
free amino acids, causing the fried slices to darken and 
develop a bitter taste, which are not consumer friendly 
(Mottram et  al. 2002; Pedreschi et  al. 2005). Moreover, 
the formation of a carcinogenic compound acrylamide 
in this reaction poses serious health risks (Bethke and 
Bussan 2013; Sowokinos et  al. 2004; Tareke et  al. 2002; 
Pedreschi et al. 2005).

Vacuolar invertase (VInv) is one of the enzymes 
involved in cold-induced sweetening, responsible for 
converting sucrose to glucose and fructose (Sowokinos 
et al. 2004; Bhaskar et al. 2010; Zhang et al. 2017). Tran-
scription of VInv  is significantly upregulated under cold 
conditions, while downregulated at normal temperatures 
(Zrenner et  al. 1996; Bhaskar et  al. 2010). Decreasing 
reducing sugars is the effective way to suppress negative 
effect of CIS (Becalski 2004; Zhu et al. 2016), and previ-
ous studies have revealed overexpressing an invertase 
inhibitor from tobacco in potatoes (Greiner et al. 1999), 
or using antisense RNA (asRNA), RNAi or CRISPR-Cas9 
to suppress the VInv  transcription or reduce its activity 
and cold-induced reducing sugars accumulation, could 
effectively reduce CIS (Zrenner et al. 1996; Bhaskar et al. 
2010; Wu et al. 2011; Clasen et al. 2016; Ly et al. 2023). 
Recently, an intronic enhancer VInvIn2En, governing 
cold-induced expression of VInv was dissected in potato 
to upregulate StVInv1 under cold conditions (Zhu et al. 
2024). Remarkably, 5 out of 18 transformed lines exhib-
ited nearly complete silencing of the  VInv  gene, with 
minimal or undetectable CIS activity (Hou et  al. 2017; 
Shi et  al. 2022). Crucially, some of the transgenic lines 
showed a complete absence of TALENs sequences in 
downstream characterization, offering a transgene-free 
approach (Clasen et al. 2016).

CRISPR/Cas technology is applied to reduce the reduc-
ing sugar content and mitigate acrylamide formation 
during frying by targeting VInv  expression (Yasmeen 
et  al. 2022;  Shi et  al. 2022; Jaiswal 2023). The sucrose 
involved in CIS is transported into the vacuole through 
the tonoplast sugar transporter (TST) (Martinoia 2018). 
Silencing  StTST1  increases sucrose in cytoplasm, fur-
thermore reduces starch degradation and reducing sugar 
accumulation in tubers, effectively enhancing resistance 
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to CIS (Liu 2023).  Recently, two sgRNAs were applied 
in the CRISPR-Cas9-mediated knockdown of vacuolar 
invertase (VInv) gene in local cultivar of potato in Paki-
stan. And the overall editing efficacy was determined 
to be 25.6% and the content of reducing sugars  showed 
five-fold reduction than control (Yasmeen et  al. 2022). 
This is the first successful application of potato VInv 
gene’s  knockdown in addressing cold-induced sweeten-
ing by resulting in minimum accumulation of reducing 
sugars in genome-edited potato.

Reducing enzymatic browning
High tuber quality is a crucial trait valued by both the 
potato-processing industry and consumers. However, 
throughout harvesting, transportation, and processing, 
enzymatic browning (EB) can occur on damaged tissue 
surfaces, severely affecting the flavor, appearance, and 
nutritional value of potato products. Moreover, mechani-
cal damage disrupts subcellular compartments, releasing 
phenolic compounds localized in vacuoles and polyphe-
nol oxidases (PPOs) localized in amyloplasts (Thygesen 
1995). PPOs catalyze the oxidation of monophenols and/
or o-diphenols to o-quinones in the presence of oxygen, 
which then react with free amino acids and macromol-
ecules such as proteins, forming red or brown pigments 
that accumulate in plant tissues (Boeckx et  al. 2015; 
Taranto et  al. 2017). Various chemical methods exist 
to prevent enzymatic browning in potatoes, primar-
ily based on inhibiting PPO activity (Moon et  al. 2020). 
However, due to growing concerns about chemical resi-
dues impacting public health, there is increasing inter-
est in cultivating potato varieties resistant to enzymatic 
browning.

PPOs comprise a multi-gene family with diverse expres-
sion patterns. In potatoes, five PPO  genes have been 
identified, each with several allelic variations (Thygesen 
1995). Knocking out all  PPO  genes could potentially be 
lethal for plants, given their involvement in numerous 
physiological processes and defense mechanisms against 
pathogens and pests. Hence, precise allele silencing or 
gene targeting is necessary. PPO2 is the primary iso-
form responsible for 55% of total PPO activity in tubers 
(Chi 2014). Successful mutation of the StPPO2 gene was 
achieved in the cv. Désirée through CRISPR/Cas9 RNP 
delivery to protoplasts (González et  al. 2020). Among 
the regenerated plants, 68% displayed mutations in at 
least one allele of the target gene, with 24% exhibiting 
mutations in all four alleles. As anticipated, these lines 
showed reduced PPO activity and enzymatic browning 
compared with control plants, with no observed off-tar-
get mutations in the remaining StPPO genes, suggesting 
that enzymatic browning can be significantly reduced 
by editing a single StPPO member. Thus far, obtained 

individuals with low PPO activity through gene editing 
without showing a significant impact on their growth and 
development, indicating the feasibility of obtaining anti-
enzymatic browning potato varieties through PPO genes 
modification.

Reducing the content of glycoside alkaloids in tubers
Glycoalkaloids are secondary metabolites found in solan-
aceous plants. Steroidal glycoalkaloids (SGAs), primarily 
composed of α-solanine and α-chaconine in commercial 
cultivars, are typically concentrated in flowers, sprouts, 
leaves, and especially in the peel of tubers (Friedman 
2006). The SGA content in tuber flesh can increase sub-
stantially under wounding, mechanical stress, or expo-
sure to high light during post-harvest handling and 
storage (Ginzberg et al. 2009). Accumulation of SGAs is 
toxic to humans and imparts a bitter taste. RNAi-medi-
ated silencing of the host gene glycoalkaloid metabolism 
4 (GAME4), involved in the SGA biosynthetic pathway, 
resulted in a significant decrease (up to 74-fold) in SGA 
content in leaves and tubers (Itkin et al. 2013). Similarly, 
lower SGA content was achieved through the RNAi 
silencing of glycoalkaloid metabolism 1 (GAME1) gene 
(Cárdenas et al. 2016).

St16DOX, encoding a steroid 16α-hydroxylase crucial 
for SGA biosynthesis and existing in a single copy, sup-
pressed SGA accumulation in potato hairy roots through 
CRISPR/Cas9 targeting (Nakayasu et  al. 2018). Among 
the 25 transgenic hairy root lines, two contained no 
detectable α-solanine and α-chaconine, instead accu-
mulating 22,26-dihydroxycholesterol, an St16DOX sub-
strate, suggesting the complete disruption of  St16DOX. 
However, whole plants have not yet been regenerated.

Sterol side chain reductase 2 (SSR2), responsible for 
cholesterol synthesis, was targeted using TALEN (Sawai 
et al. 2014). Only one stable line with tetra allelic muta-
tions in gene  SSR2, lacking a wild-type copy, exhibited 
significantly reduced SGA content (10% that of the wild 
type) in leaves. However, SGA content in tubers of this 
line was not reported. In a recent study, SSR2 was tar-
geted using CRISPR/Cas9, but tetra allelic mutants could 
not be obtained (Zheng et al. 2021). Although reductions 
in SGA content up to 34% in tuber flesh were reported, 
some lines exhibited higher SGA levels in both tubers 
and leaves compared with the wild type.

Overcoming self‑incompatibility in potato
Cultivated potatoes are primarily tetraploid, which poses 
challenges for improvement due to tetrasomic genet-
ics and clonal propagation. There is increasing inter-
est in re-domesticating potatoes as an inbred line-based 
crop propagated by seeds at the diploid level (Jansky 
et  al. 2016). However, the self-incompatibility (SI) and 
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inbreeding depression of diploid potatoes substantially 
hinder the development of inbred lines. In potato, self-
incompatibility is governed by the single, multi-allelic 
S-locus comprising the S-locus RNase (S-RNase) and 
S-locus F-box proteins (SLFs). The S-RNase protein rec-
ognizes self-pollen and inhibits its elongation through 
RNA degradation (Kubo et  al. 2010). Thus, inhibiting 
the function of S-RNase could potentially yield self-
compatible lines. Two studies have independently tar-
geted conserved regions of S-RNase alleles to knock 
out this gene using CRISPR/Cas9 (Enciso-Rodriguez 
et  al. 2019; Ye et  al. 2018). The resulting mutants har-
bored multi-allelic mutations in the S-RNase gene and 
transmitted self-compatibility to their progeny. Moreo-
ver, in some cases, the  Cas9 gene segregated out in T1 
seeds, suggesting the possibility of obtaining nontrans-
genic progeny. Furthermore, the function of the S-locus 
inhibitor (Sli) was explored by targeting it with Cas9 to 
convert self-compatible varieties into self-incompatible 
ones (Eggers et al. 2021). Double knockout lines of HT-B 
and S-RNase displayed increased seed production up to 
three times higher than observed in the S-RNase-only 
knockout, indicating a synergistic effect between HT-B 
and S-RNase in self-compatibility in diploid potato (Lee 
et al. 2023). These studies introduced a new approach to 
diploid potato breeding, expanded the resources of self-
compatible potatoes, and are poised to accelerate genetic 
improvements in potatoes.

Enhancing biotic stress resistance in potato
Traditionally, fungicides have been used to protect 
against late blight, but this approach can lead to chemical 
pollution. Compared with chemical pesticides, planting 
disease-resistant varieties remains the most cost-effective 
and environmentally friendly method for preventing and 
controlling potato late blight. Resistance to P. infestans is 
conferred by dominant R genes encoding proteins that 
recognize avirulence (Avr) effectors and trigger plant 
responses. Incorporating Rgenes from wild potato rela-
tives is currently considered the most reliable and envi-
ronmentally friendly approach (Stefańczyk et  al. 2020). 
Successful transfer of  R  genes has been achieved (Hal-
terman et al. 2016; Ghislain et al. 2019; Byarugaba et al. 
2021), resulting in genetically modified cultivars resist-
ant to widespread  P. infestans  infection. These cultivars 
are primarily used for cultivation in sub-Saharan Africa 
(Ghislain et al. 2019; Byarugaba et al. 2021).

CRISPR/Cas-based technologies have ushered in a 
new era for exploiting plant resistance to late blight and 
deciphering the mechanisms behind plant development 
and immunity even in food crops by two main strategies: 
knockout of susceptibility genes and knock-in of metab-
olite biosynthetic genes (Hegde et  al. 2021; Kieu et  al. 

2021; Ma et  al. 2023). In the knockout approach, (Kieu 
et al. 2021) targeted potato susceptibility genes (S-genes) 
triggered upon infection by P. infestans. Seven putative 
potato S-genes were analyzed in cvs. Désirée and King 
Edward. Tetra-allelic deletion mutants were assessed for 
resistance to P. infestans based on lesion size, percent-
age of infected leaves, and seedling morphology. Three 
S-genes, StDND1, StCHL1, and StDMR6-1, were impli-
cated in P. infestans susceptibility. Mutant plants lacking 
StCHL1 and StDMR6-1 exhibited late blight resistance, 
with reduced lesion size compared with WT and unaf-
fected morphology. These lines with loss-of-function 
mutations in S-genes could be valuable in breeding to 
confer resistance to P. infestans, particularly when com-
bined with specific R-genes.

In the knock-in approach, resistance to P. infestans 
in cv. Russet Burbank was enhanced by identifying a 
pathogen-responsive gene, StCCoAOMT, through RNA-
seq analysis in both mock and P. infestans-inoculated 
potato plants (Hegde et al. 2021). StCCoAOMT encodes 
caffeoyl-CoA methyltransferase, an enzyme involved in 
synthesizing defense-related metabolites in plants (Hegde 
et al. 2020). A specific allele of StCCoAOMT harboring a 
point mutation was identified, which generates a prema-
ture termination codon and results in a truncated protein 
lacking 96 amino acids from the N-terminus. Recently, 
Cas9-mediated HDR was employed to replace an SNP in 
the StCCoAOMT  gene, eliminating the premature stop 
codon and restoring the full-length protein (Hegde et al. 
2021), leading to increased expression of downstreamR-
genes and imparting partial late blight resistance in 
transgenic plants. Notably, this resistance was character-
ized by a significant reduction in plant severity and path-
ogen biomass (more than a 21-fold decrease) in stems. 
An increased accumulation of feruloylated metabolites, 
involved in tuberization and lignification of cell walls, 
was also observed around the infection site.

Another destructive pathogen affecting potatoes is 
PVY, causing substantial losses in both tuber qual-
ity and quantity, up to 80% yield loss (Quenouille et  al. 
2013). Because PVY is transmitted by various aphids, 
reducing vector populations through insecticide use is 
a common method to prevent virus transmission. How-
ever, the most effective approach is developing resistant 
cultivars through genetic engineering. Recently, resist-
ance to multiple PVY strains was achieved through the 
knockout of viral RNA transcripts by using the CRISPR/
Cas13a system. sgRNAs were designed from conserved 
coding regions of three PVY strains (PVYO, PVYN, and 
the recombinant PVYN:O strain), targeting proteins P3 
(viral factors), CI (virus movement), Nlb (viral replicase), 
and CP (capsid) regions of the viral genome. All potato 
lines with Cas13a/sgRNA targeting P3, CI, Nlb, and CP 
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in the PVY genome exhibited the ability to cleave the 
RNA genome of PVY. Moreover, they displayed no dis-
ease symptoms and a considerable reduction in PVYO 
and PVYNaccumulation in leaves, with symptom severity 
negatively correlated with LshCas13a/sgRNA expression 
levels (Zhan et al. 2019). This broad-spectrum resistance 
to different potato viruses (such as PVS, PVY, and PVA) 
can be engineered using the same multiplexing method. 
A recent study targeted eIF4E1, a host protein exploited 
by PVY for replication after infecting cells, thus provid-
ing recessive resistance when mutated (Lucioli 2022). 
The first generation of transgenic potatoes had only two 
eIF4E1 allele mutations, rendering them susceptible to 
PVYNTN. Regeneration and re-transfection of protoplasts 
isolated from the first generation of mutant plants pro-
duced two complete KO lines with partial resistance to 
PVYNTN infection.

Advances in genome studies of potato
Identification, collection and evaluation of germplasm 
resources
Germplasm resources are the foundation of modern seed 
industry. The collection, identification, and evaluation of 
excellent germplasm resources are prerequisites for vari-
ety breeding and elite gene mining. According to data 
provided by the World information and early warning 
system on plant genetic resources for food and agricul-
ture (WIEWS, https://​www.​fao.​org/​wiews/​zh/), there are 
currently 82,293 potato germplasm resources preserved 
in 89 institutions and 4 international/regional research 
centers in 59 countries worldwide. These collections are 
of great significance for the study of potato germplasm 
diversity and crop improvement, and provide valuable 
resources for researchers.

In potato breeding, tuber morphological traits are 
important selection targets for the demands of the fresh 
and processing markets. Potato varieties with increased 
levels of minerals have great potential to alleviate mineral 
malnutrition. A diversity panel of 214 advanced clones 
was genotyped and phenotyped to obtain genomic esti-
mated breeding values, which helps to better understand 
the genetic basis of potato morphological traits and min-
eral macro and micronutrients, and identify parents with 
the best breeding values to improve selection efficiency 
(Pandey et al. 2023a, b). (Singh et al. 2022) evaluated the 
mineral nutrient content of 243 tetraploid potato tubers 
with and without skin, and found that the nutrient con-
centration in the epidermal layer of the tubers was high 
and peeling would lead to nutrient loss, providing a refer-
ence for breeding high nutrient potato varieties.

To gain insight into the genetic potential of the germ-
plasm used for potato breeding in a Nordic breeding pro-
gram as well as all available accessions from the Nordic 

genebank (NordGen), a genotyping and trait evaluation 
on 133 breeding backbone parents and gene banks was 
conducted, suggesting that more genotypes outside of the 
Nordic region should be introduced in the subsequent 
breeding process (Selga et al. 2022). Another phenotypic 
variation and genetic diversity of 149 main potato culti-
vars in China identified a molecular marker STI032 that 
is significantly correlated to starch content and maturity 
(Hu et al. 2022).

The resistance of 189 late blight resistant varieties was 
evaluated, and identified 10 elite broad-spectrum resist-
ance resources and 127 Phytophthora infestans resist-
ance resources, revealing the rich genetic diversity of 
wild resources (Duan et al. 2021). With the development 
of molecular biology technology, the gradual deepen-
ing of understanding of potato germplasm resources 
at the molecular and genomic levels will provide abun-
dant information for genetic study and breeding, thereby 
effectively utilizing germplasm resources and accelerat-
ing the potato genetic improvement and new germplasm 
innovation.

Genome/high‑throughput sequencing provides genetic 
resources/gene targets
A profound understanding of potato genomics and 
genetics is essential for effective molecular breeding. 
High-quality genome sequence data are fundamental 
for identifying key genetic factors in potato breeding, 
such as self-incompatibility, inbreeding depression, and 
the genetic basis of tuber formation. Since the release 
of the first reference genome for a monoploid potato 
(DM1-3 516 R44) in 2011, several studies have reported 
the genome assemblies for various cultivated and wild 
diploid potato accessions, offering valuable resources 
(Potato Genome Sequencing Consortium  2011; Aver-
sano et  al.  2015; Leisner et  al.  2018; Zhou et  al. 2020; 
Yan et al. 2021; Tang et al. 2022). However, most potato 
cultivars have tetraploid genomes, presenting a signifi-
cant challenge for genome assembly. Existing tetraploid 
genome sequences are limited to whole-genome shot-
gun sequencing data (Hardigan et  al. 2017) or highly 
fragmented assemblies (Kyriakidou et  al. 2020), lacking 
phased haplotype data for the four alleles.

Recent advances in third-generation sequencing tech-
nology, coupled with improved data computing and anal-
ysis capabilities, have enabled comprehensive analysis of 
autotetraploid potato genomes using long-range, high-
accuracy DNA sequencing (Cheng et  al. 2021). A com-
bination of PacBio 3.1 HiFi and single-cell sequencing 
technology, along with HiC technology-assisted assembly 
was applied and obtained four sets of haplotype genomes 
for the tetraploid variety Otava, yielding important ref-
erence data for tetraploid potato research including the 

https://www.fao.org/wiews/zh/
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annotation of 152,855 genes, with 54% present in all four 
haplotype genomes (Sun et al. 2022b). Wang et al. (2022a, 
b) presented a high-quality, chromosome-scale refer-
ence genome sequence of Qingshu 9, a homotetraploid 
heterozygous potato variety. Leveraging cutting-edge 
sequencing technologies and polyploid graph binning, 
Bao et  al. (2022) achieved a chromosome-scale, haplo-
type-resolved genome assembly of the cultivated potato 
Cooperation-88 (C88), facilitating research on potato 
genome variation.

The concept of the pan-genome, encompassing all 
genetic information of a species, offers a broader view of 
genetic diversity than a single reference genome. Hoopes 
(2022) generated phased genome assemblies of six potato 
cultivars, cataloging the gene complement, identifying 
allelic variation associated with agronomic traits, and 
constructing the first pan-genome for tetraploid potato. 
Furthermore, Tang et  al. (2022) conducted evolutionary 
analysis of 432 diploid materials, constructing high-qual-
ity diploid potato genomes and pan-genome maps for 
cultivated and closely related wild species. These genome 
disclosures, including those of tetraploid cultivars such 
as Atlantic, Otava, Qingshu 9, and C88, provide unprec-
edented genetic insights into genomic structure, varia-
tion, and diversity, laying a solid foundation for variety 
improvement based on genomic variation.

GWAS for potato
Genome-wide association study (GWAS) has proven 
effective in identifying causal variation of complex traits, 
offering higher resolution at the genome level compared 
with traditional linkage mapping strategies (Naeem et al. 
2021). Sharma (2018) examined various GWAS models 
in cultivated potato genotypes using the Infinium 8  K 
Potato SNP Array and found that kinship, not population 
structure, was the most important factor in determin-
ing the extent of false associations. Using the tetraploid 
potato genome, GWAS has been employed to associate 
candidate genes with specific chromosomes in culti-
vated potato species for protein content (Klaassen et al. 
2019), mineral content (Pandey et al. 2023a), scab resist-
ance (Kaiser et  al. 2020), root and stolon traits (Yousaf 
2021), tuber traits (Pandey et  al. 2022), tuber bruis-
ing (Angelin-Bonnet et  al. 2023), and tuber-bound free 
amino acids (Pandey et al. 2023b). Re-sequence analysis 
on 214 representative potato varieties bred in the United 
States was conducted and uncovered regulatory genes 
linked to crucial traits such as skin color, growth period, 
and tuber formation (Pandey et al. 2021). Similarly, nine 
related regions and three candidate genes associated with 
drought stress were identified through GWAS analysis 
(Díaz et al. 2021).

In the field of disease resistance, Wang et  al. (2021) 
analyzed 284 tetraploid potatoes via GWAS, identify-
ing 44 candidate genes linked to late blight. Zhang et al. 
(2022) re-sequenced the genomes of 108 core cultivar 
potato accessions with rich genetic diversity and popu-
lation structure from the International Potato Center, 
revealing numerous candidate loci related to photoperi-
odic flowering time and temperature sensitivity through 
GWAS, which provides a valuable resource facilitating 
the understanding of the domestication process, genetic 
studies, and agronomic improvement of autotetraploid 
potato. A GWAS on the tuber flesh color of 150 tetra-
ploid heterozygous potatoes was conducted and identi-
fied the associated candidate genes (Wang et  al. 2022a, 
b). These GWAS findings indicate the significance of 
high-quality reference genomes in analyzing complex 
genomes and establish a foundation for further research 
on genetic analysis and variety selection for crucial traits.

Genomic design and breeding technology for diploid hybrid 
potato
Tubers are the planting material in commercial potato 
cultivation. However, clonal propagation leads to low 
reproduction coefficient, high cost of storage and trans-
portation, whereas tubers are easy to carry viruses and 
pests, which have hindered the development of potato 
industry for a long time. Unlike the modern cultivation of 
potatoes, which mainly rely on tetraploids, approximately 
70% of potato germplasm resources in nature are diploid 
(Spooner et al. 2014). Therefore, screening and identify-
ing excellent diploid potato germplasm and developing 
a hybrid potato breeding system aimed at converting 
potato from a tuber-propagated tetraploid crop into a 
seed-propagated diploid crop through crossing inbred 
lines, has become a research hotspot in the potato breed-
ing and research community (Lindhout et  al. 2011; Jan-
sky et al. 2016). However, achieving diploid hybrid potato 
breeding is not an easy task, as it requires highly homozy-
gous inbred parents to cross and exhibit heterosis, while 
the inherent self-incompatibility and inbreeding depres-
sion of natural diploid potato germplasm hindered the 
development of high-purity and excellent inbred lines.

To cultivate inbred lines, the first step is to solve 
the problem of incompatible inbreeding. Qiao et  al. 
(2004a, 2004b) used plants such as  Antirhonum majus 
and Petunia hybrid as model to elucidate the molecu-
lar mechanism by which the S-RNase gene determines 
self-incompatibility, laying a theoretical foundation for 
breaking the limitation of self-incompatibility in diploid 
potatoes. Additionally, comparative genomics methods 
combined with genome editing techniques were applied 
to two naturally mutated self-compatible clones from 
wild potatoes and the genes controlling this trait were 
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identified, S-RNase and Sli (S-local inhibitor) (Zhang 
et al. 2019). Subsequently, by cloning Sli gene in the pol-
len, cross of self-compatible diploid potato RH89-039–16 
with self-incompatible lines was revealed to induce the 
mating transition from self-incompatibility to self-com-
patibility effectively (Ma et al. 2021). Breaks self-incom-
patibility in diploid potatoes paves a path forward for the 
diploid hybrid breeding program (Eggers et al. 2021).

Inbreeding depression refers to the phenomenon of 
decreased vitality, weakened resistance, and reduced 
yield in the offspring of biological self-pollination. Pota-
toes accumulate a large number of recessive deleterious 
mutations during long-term asexual reproduction. Once 
self-pollinated, the effects of deleterious mutations will 
become apparent in offspring, leading to inbreeding 
depression. Recently, the extensive deleterious mutations 
in a diploid potato diversity panel were identified, pro-
viding new evidence for identifying functional sites and 
eliminating harmful mutations, and facilitating develop-
ing strategies to minimize fixed load in breeding popula-
tions (Wu et al. 2023). Moreover, the effect of deleterious 
mutations in hybrid varieties was revealed to be masked 
by crossing inbred lines with significant genetic back-
ground differences (Zhang et al. 2019). However, the del-
eterious mutations that lead to inbreeding depression are 
embedded in the two haplotypes of potatoes and cannot 
be completely eliminated through recombination (Zhou 
et  al. 2020). Therefore, it is necessary to select, design, 
and eliminate deleterious mutations, overcome inbreed-
ing depression, and obtain excellent purebred inbred 
lines with the genomic information.

Recently, a hybrid potato genome design system has 
been established and highly viable and fertile inbred lines 
(with a homozygosity of up to 99.94%) were obtained 
from different inbred lines, and hybridized two differ-
ent inbred lines to produce the first generation of identi-
cal F1 hybrid H1. A plot trial showed that the estimated 
tuber yield of the F1 hybrid H1 was close to 40 tons per 
hectare, displaying strong heterosis (Zhang et  al. 2021). 
Though potato hybrid breeding is still in its infancy, it has 
been a milestone achievement, opening a door for potato 
breeding and ushering in the era of precision breeding 
and rapid iteration for genetic improvement of potatoes 
(Markel and Shih 2021; Mascher et al. 2021).

Future perspectives
With traditional breeding techniques forming the back-
bone of potato variety selection globally, the breed-
ing process tends to be lengthy. However, with rapid 
advancements in biotechnology and sequencing technol-
ogy, significant strides have been made in potato basic 
research. These advancements can advance the under-
standing of genetic mechanisms underlying crucial traits 

and hold promise for enhancing comprehensive breed-
ing technologies. The successful assembly of haplotype 
genomes for tetraploid cultivated species and the con-
struction of variation and pan-genome maps for diploid 
wild and cultivated species mark pivotal breakthroughs 
in molecular breeding and whole-genome selection 
breeding. Leveraging the research advantages of pan-
genomics and identifying key traits such as agronomy, 
quality, stress resistance, and disease resistance regula-
tory genes, as well as analyzing genetic regulatory mech-
anisms and molecular networks, will significantly boost 
the evaluation and utilization of germplasm resources 
and the genetic enhancement of potato varieties.

The use of CRISPR/Cas gene editing technology for 
variety enhancement and the development of superior 
new varieties presents a rapid and effective approach, 
albeit with challenges such as the simultaneous mutation 
of four alleles. Gene knockout is the primary method for 
potato gene editing, with the less commonly used, more 
precise editing tools such as Single Base Editor and Prime 
Editor facing hurdles, primarily due to their relatively low 
editing efficiency in potatoes. However, these novel tools 
require specific protocols and enhancements tailored to 
the potato context. Developing a genotype-independent 
genetic transformation system, enhancing genetic trans-
formation efficiency, and broadening the application 
scope of CRISPR/Cas technology are crucial pathways for 
improving potato variety genetics. Additionally, prioritiz-
ing tools that do not leave traces of exogenous DNA is 
essential, given their lower regulatory barriers. With the 
ongoing sequencing of more tetraploid potato genomes 
and the refinement of gene editing technology, a wider 
array of genes will become available for precise and effi-
cient breeding of new potato varieties in the future.
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