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From acidity to sweetness: a comprehensive 
review of carbon accumulation in grape berries
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Abstract 

Most of the carbon found in fruits at harvest is imported by the phloem. Imported carbon provide the material 
needed for the accumulation of sugars, organic acids, secondary compounds, in addition to the material needed 
for the synthesis of cell walls. The accumulation of sugars during fruit development influences not only sweetness 
but also various parameters controlling fruit composition (fruit “quality”). The accumulation of organic acids and sugar 
in grape berry flesh cells is a key process for berry development and ripening. The present review presents an update 
of the research on grape berry development, anatomical structure, sugar and acid metabolism, sugar transporters, 
and regulatory factors.
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Introduction
The grapevine (Vitis vinifera L.), as a prominent fruit 
crop, is cultivated extensively around the world, with a 
cultivation history extending over 11,000 years (Dong 
et  al. 2023). Grape berries serve a wide range of activi-
ties centered around table grapes, raisins, juice, wine and 
spirits, catering to a diverse array of markets (Kuhn et al. 
2014; Li et al. 2021). As of 2022, the total global vineyard 
surface area was approximately 7.28  million hectares 
(https://​www.​stati​sta.​com/​stati​stics/​240635/​total-​viney​
ard-​areas-​world​wide-​and-​in-​europe). The revenue in the 
fresh fruits market, which includes grapes, is expected 
to be around US$ 726 billion in 2024, with a forecasted 
annual growth of 6.58% (CAGR 2024–2028) (https://​

www.​stati​sta.​com/​outlo​ok/​cmo/​food/​fruits-​nuts/​fresh-​
fruits/​world​wide). The global wine market, which is a 
major segment of grape consumption, was valued at USD 
326  billion and is expected to grow at a CAGR of 4.4% 
during 2021–2026 (https://​www.​mordo​rinte​llige​nce.​
com/​indus​try-​repor​ts/​grapes-​market). Additionally, red 
wine market specifically is expected to grow to $136 bil-
lion in 2028 at a CAGR of 5.2% (https://​finan​ce.​yahoo.​
com/​news/​red-​wine-​global-​market-​report-​16130​0922.​
html). The grapes market itself is expected to reach USD 
215 billion in 2024 and grow at a CAGR of 7.10% to reach 
USD 303.20 billion by 2029 (https://​www.​mordo​rinte​llige​
nce.​com/​indus​try-​repor​ts/​grapes-​market). These figures 
pinpoint the major economic impact of grape berry pro-
duction and use.

During ripening, the berries accumulate high con-
centration of hexoses (1.1  M) in the vacuoles of flesh 
cells (Shahood et  al. 2020; Du et  al. 2023). The sweet-
ness of grape berries impacts directly the sensory qual-
ity of berries and wine (Conde et  al. 2007; Yang et  al. 
2023; Jiang et  al. 2024). Sugar accumulation in the ber-
ries is a finely tuned outcome of numerous physiologi-
cal processes including photosynthesis in the leaves, 
long-distance transport in phloem and unloading in sink 
organs (Martínez-Esteso et  al. 2011; Lecourieux et  al. 
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2014; Castellarin et al. 2016; Zhang et al. 2019; Martínez-
Lüscher and Kurtural 2023). Till the eighties, in some 
wine areas, it was not uncommon to add sugars to the 
must (chaptalization) under controlled practices when 
the berry sugar content was not high enough to produce 
wines. Due to global climate change, it is now not uncom-
mon to use sugar removing or de-alcoolization tech-
niques because the grape berry sugar content becomes 
too high. A comprehensive understanding of sugar and 
acid accumulation and metabolism is crucial both for the 
selection and cultivation of superior grapevine varieties 
and for the optimization of agricultural practices aimed 
at enhancing fruit quality.

The sensitivity of grape leaves photosynthesis to vari-
ous environmental factors (water, light and tempera-
ture) has been extensively studied (Jackson and Lombard 
1993; Kolb et  al. 2001; Hendrickson et  al. 2004; Roig-
Oliver et  al. 2020; Rafique et  al. 2023). However, it has 
been shown that the main driver of sugar accumulation 
in grape berries lies in the unloading process rather than 
in the ability of source leaves to synthesize and export 
photosynthetic sugars (Li et  al. 2021). It involves two 
pathways that are not mutually exclusive: symplastic 
and apoplastic (Ruan et al. 2001; Viola et al. 2001; Zhang 
et  al. 2006; Nie et  al. 2010; Braun et  al. 2014; Ren et  al. 
2023). Symplastic unloading through the plasmodesmata 
predominate during the early and mid-stages of grape 
berry development, while apoplastic unloading through 
the membranes becomes prominent at véraison (Zhang 
et al. 2022; Zhou et al. 2023). The plasmodesmata play a 
significant role in the switch from symplastic to apoplas-
tic pathways (Zhang et al. 2006; Li et al. 2021; Zhou et al. 
2023).

This switch is pivotal for the regulation of sugar accu-
mulation (Zhang et al. 2006; Zhou et al. 2023). In addition 
to changes in plasmodesmatal density and permeability, 
it involves various enzymes of sugar metabolism, sugar 

transporter proteins and transcriptional regulators 
(Lecourieux et al. 2014; Durán-Soria et al. 2020; Li et al. 
2021; Zenoni et  al. 2023). Although this topic has been 
revised several times, significant and recent progress 
makes it useful to update it (Zhou et al. 2023; Liang et al. 
2023). The present review highlights the challenges faced 
and future prospects, aiming to provide reference for 
in-depth studies into carbon accumulation in grape ber-
ries and thereby accelerate the breeding of high-quality 
grapes.

Grape berry development and anatomical structure
The development and ripening of grape berries are com-
monly divided into three stages corresponding to differ-
ent balances in sugars, acids, and phenolic compounds. 
The initial growth Stage I after fruit set is character-
ized by rapid cell division and expansion, resulting in 
an increase in berry size. During this stage, the berries 
are hard and green, with high acid and low sugar con-
tent (Harris et al. 1968; Kuhn et al. 2014). Stage II is a lag 
phase, characterized by slow growth. At the end of this 
stage, major physiological changes lead to véraison (onset 
of ripening) is visually marked by a change in berry color. 
From this time on, Stage III (ripening) is characterized by 
a massive hexose accumulation of hexoses, berry soften-
ing, and synthesis of secondary metabolites, including 
aromatic compounds (Coombe 1992; Lu et al. 2023).

Each berry is composed of the exocarp which provides 
color and contains aromatic compounds and tannins, 
the mesocarp which is the main reservoir of sugars and 
acids, the seeds which contribute tannins and oils, and 
the endocarp as the thin layer that delineates the bound-
ary of the locular cavities where the seeds develop (Fig. 1) 
(Coombe 1987; Conde et  al. 2007; Fontes et  al. 2011; 
Candar 2023). The vascular system interconnects these 
parts, ensuring the transport of the compounds that 
allow fruit development (Zhang et al. 2006). During the 

Fig. 1  The anatomical structure of grape berry
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three developmental stages, the berries undergo major 
biochemical transformations, including sucrose-hexoses 
conversion, a change in the acid/sugar balance, the syn-
thesis of tannins and aromatic compounds, which collec-
tively contribute to their sensory attributes (Conde et al. 
2007; Martínez-Esteso et al. 2011; Kuhn et al. 2014; Per-
otti et al. 2023).

Sugar and organic metabolism in grape berries
Grape berry metabolism involves a highly orchestrated 
interplay between sugar and acid biosynthesis, heavily 
reliant on photosynthetic carbon sources from the leaves 
(Sweetman et  al. 2009). Sucrose, the main photoassimi-
late synthesized in the leaves, is translocated to the ber-
ries, forming the backbone for the synthesis of sugars 
and acids. The metabolism of sugars and organic acids 
undergo dramatic shifts at the véraison stage (Brady 
1987; Giovannoni 2001, 2004; Maria et al. 2011; Giovan-
noni et al. 2017; Liu et al. 2023).

Before véraison, the berry engages in cell division 
and growth, accumulating organic acids, primarily 
malic acid, while sugar concentration remains at a low 
level (Conde et  al. 2007; Dai et  al. 2013; Etienne et  al. 
2013; Batista-Silva et  al. 2018). At this stage, Sucrose is 
actively unloaded to berries and subsequently hydro-
lyzed by cell wall invertases (CWINV) into glucose and 
fructose (Maria et  al. 2011; Kuhn et  al. 2014,). After 
uptake by the flesh cells, glucose is further metabolized 
to phosphoenolpyruvate (PEP) by glycolysis. PEP lies 
at a critical crossroad leading to two separate pathways 
towards malate synthesis (Sweetman et  al. 2009). PEP 
carboxylase (PEPC) catalyzes the conversion of PEP to 
oxaloacetate (OAA), which is then reduced to malate by 
NAD-dependent malate dehydrogenase (NAD-MDH) 
in the cytoplasm (Givan 1999). Alternatively, PEP may 
be converted by pyruvate kinase (PK) to form pyru-
vate, which can be further reduced to malate by NADP-
dependent malic enzyme (NADP-ME) (Farineau and 
Lavalmartin 1977; Taureilles-Saurel et al. 1995; Sweetman 
et al. 2009; Martínez-Esteso et al. 2011). Then the malate 
can be transported into the mitochondrial matrix by 
malate transporter embedded in the inner mitochondrial 
membrane. Once inside, a mitochondrial NAD-depend-
ent malate dehydrogenase converts malate to OAA and 
NADH, or a NAD-dependent malic enzyme converts it to 
pyruvate, CO2, and NADH (Sweetman et al. 2009). These 
intermediates feed the tricarboxylic acid (TCA) cycle, 
with the potential for malate regeneration depending on 
the metabolic flux within the mitochondria (Beriashvili 
and Beriashvili 1996; Ollat and Gaudillère 1997; Han-
ning et al. 1999). Excess malate is ultimately transported 
into the vacuoles, a process critical for maintaining the 

cytosolic pH balance and regulating the acid taste of the 
berry (Martínez-Esteso et al. 2011).

Grape berries exhibit a remarkable ability to synthe-
size and accumulate malate at pre-véraison stage, not 
only through the import of photosynthetically fixed car-
bon from the leaves, but also through the photosynthetic 
activity of exocarp cells (Sweetman et  al. 2009; Garrido 
et  al. 2023). Despite the limited presence of stomata in 
the berry skin, respiratory CO2 contributes to the synthe-
sis of malate in flesh cells. Respiratory CO2 is converted 
to bicarbonate ion (HCO3

−) by carbonic anhydrase 
within the cytoplasm (Blanke and Lenz 1989; Garrido 
et  al. 2023,). Phosphoenolpyruvate carboxylase (PEPC) 
then catalyzes the formation of oxaloacetate (OAA) from 
HCO3

− and the formation of phosphoenolpyruvate (PEP) 
in an irreversible β-carboxylation reaction (Beriashvili 
and Beriashvili 1996; Sweetman et al. 2009). The OAA is 
subsequently reduced by NAD-MDH to form malate. The 
malate is not a metabolic end point; it can be shuttled 
into chloroplasts where it undergoes decarboxylation by 
NADP-ME (Maria et al. 2011; Garrido et al. 2023). This 
reaction releases CO2 which can be re-assimilated by rib-
ulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) 
in the Calvin-Benson-Bassham (CBB) cycle (Conde et al. 
2007). The pyruvate resulting from this decarboxylation 
can be converted back to PEP by pyruvate, phosphate 
dikinase (PPDK), resulting in a regenerative loop within 
carbon metabolism (Ruffner 1982; Sweetman et al. 2009; 
Etienne et  al. 2013; Garrido et  al. 2023). The intercon-
version of pyruvate and malate provides connectivity to 
other essential metabolic pathways (Garrido et al. 2021). 
Both pyruvate and malate can feed the tricarboxylic acid 
(TCA) cycle, supporting cellular respiration and biosyn-
thetic reactions (Fig.  3) (Etienne et  al. 2013). Alterna-
tively, malate can accumulate in the vacuole, contributing 
to the grape’s acidity, or it can serve as a substrate for glu-
coneogenesis, influencing sugar concentrations (Dai et al. 
2013; Etienne et  al. 2013; Reshef et  al. 2022). Moreover, 
potassium influences the pH and acidity of grape must, 
with higher potassium levels often associated with lower 
acidity due to the interaction with malate in the berries 
(Rogiers et al. 2017).

Post-véraison, there is an onset of hexose (glucose 
and fructose) accumulation and a concomitant decline 
in malate content (Davies and Robinson 1996). Sucrose 
metabolism is a central aspect of the biochemistry gov-
erning grape berry hexose accumulation (Ollat et  al. 
2002; Gambetta et al. 2010; Ruan 2014; Zhu et al. 2022). 
There is an overview of sugar metabolism in post-
véraison berries (Fig.  2). At arrival in the berries, the 
sucrose transported by the phloem can be either hydro-
lyzed into glucose and fructose by invertases (INVs) or 
converted to UDPG and fructose by sucrose synthase 
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(SS) (Li et  al. 2012; Verma et  al. 2011) (Fig.  2). Three 
types of invertases differ by their localization, cyto-
solic for the neutral invertase (NINV), vacuolar for the 
vacuolar invertase (VINV) and cell wall for the cell wall 
invertase (CWINV) (Ruan et al. 2010; Wang et al. 2014) 
(Fig. 2). The three types of invertase collectively ensure 
that hexose is available. SS provides an alternative 
route for sucrose degradation, generating fructose and 
UDP-glucose, which is particularly important for sus-
taining sucrose levels within cells (Verma et  al. 2011). 
Hexokinase (HK) and fructokinase (FK) phosphorylate 
glucose and fructose to glucose-6-phosphate (G6P) and 
fructose-6-phosphate (F6P), respectively (Jang et  al. 
1997; Granot et  al. 2013) (Fig.  2). Phosphofructoki-
nase (PFK) then acts on F6P converting it to fructose-
1,6-bisphosphate (F1,6BP), channeling it into glycolysis 
and subsequently into the TCA cycle, a key energy-
producing pathway in respiration (Ronimus and Mor-
gan 2001) (Fig.  2). Sucrose phosphate synthase (SPS) 
and sucrose phosphate phosphatase (SPP) cooperate 
in the resynthesis of sucrose, reutilizing the products 
of SS activity to regenerate sucrose from UDP-glucose 
and F6P (Huber and Huber 1996; Tian et al. 2012; Xia 
et al. 2021; Huang et al. 2022) (Fig. 2). This cycle, called 

“futile sucrose recycle” is not merely a metabolic detour 
but serves a regulatory function in balancing cellular 
energy and carbon partitioning, which is crucial during 
the stages of rapid growth and sugar accumulation of 
berries (Nguyen-Quoc and Foyer 2001).

The metabolism of sucrose in grape berries is a multi-
faceted process that involves several specialized enzymes 
operating in concert across different cellular locations. 
The coordinated activities of SUTs, INVs, and SS man-
age the distribution and conversion of sucrose, while the 
activities of HK, FK, PFK, SPS, and SPP ensure its utili-
zation and recycling within the cellular environment. 
The ‘futile sucrose cycle’ plays a substantial role in the 
developmental process, ensuring the hexoses accumula-
tion essential for fruit quality (Nguyen-Quoc and Foyer 
2001). Understanding the interplay of these enzymes and 
their regulation factors provide critical insight for strate-
gies aimed at optimizing sugar content in grape berries, 
which is paramount for achieving desired wine attributes. 
Future research aimed at quantitatively measuring these 
enzyme activities in  vivo and identifying their regula-
tory mechanisms offers the prospect of fine-tuning grape 
berry composition in the context of ever-changing envi-
ronmental challenges and winemaking goals.

Fig. 2  Sugar accumulation and sugar metabolism in the grape cells. PEP, phosphoenolpyruvate; OAA, oxaloacetic acid; CWINV, cell wall invertase; 
NINV, neutral invertase; VINV, vacuolar invertase; PEPC, phosphoenolpyruvate carboxylase; PK, pyruvate kinase; NAD-MDH, NAD-linked malic 
enzyme; NADP-ME, NADP-linked malic enzyme; FK, fructokinase; SS, sucrose synthase; SPS, sucrose phosphate synthase; SPP, sucrose phosphate 
phosphatase; HK, hexokinase; PFK, phosphofructokinase. CBB, Calvin-Benson-Bassham; TCA, tricarboxylic acid cycle
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Sugar transporters in grape berries
Several families of sugar transporters play a key role in 
sugar accumulation during the ripening of grape berries. 
Therefore, these transporters are a key to understand 
the molecular mechanisms underlying these processes. 
The function of numerous sugar transport proteins has 
been elucidated (Reinders et  al. 2012; Eom et  al. 2015; 
Nino-Gonzalez et al. 2019; Wen et al. 2022; Pegler et al. 
2023). Among these, three primary sugar transporter 
families have been identified as key contributors to sugar 
accumulation in plants: the Monosaccharide Transport-
ers (MST), the Sucrose Transporters (SUT/SUC), and 
the Sugar Will Eventually be Exported Transporters 
(SWEET) protein families (Doidy et al. 2012; Pegler et al. 
2023).

Members of the monosaccharide transporter (MST) 
family are ubiquitously distributed across plant species 
and are predicted to possess 12 transmembrane domains 
(Pao et al. 1998; Buttner and Sauer 2000; Buttner 2007). 

Within this family, seven subfamilies have been clas-
sified: Sugar Transport Proteins/Hexose Transporters 
(STP/HT), Tonoplast Sugar Transporters (TST, formerly 
known as TMT), Early Responsive to Dehydration Like 
6 (ERDL6), Plastidic Glucose Transporters (pGlcT), Ino-
sitol Transporters (INT), Polyol/Monosaccharide Trans-
porters (PMT, formerly known as PLT), and Vacuolar 
Glucose Transporters (VGT) (Buttner 2007; Slewinski 
2011; Nino-Gonzalez et  al. 2019). Notably, the STP/HT 
and TST subfamilies have been extensively studied.

MSTs have been acknowledged as pivotal in sugar 
accumulation (Fontes et  al. 2011). In grapevine, a total 
of 59 monosaccharide transporter genes have been iden-
tified, which can be categorized into 7 subfamilies. It 
includes 20 VvHT (Subfamily I), 3 VvTMT (Subfamily 
II), 5 VvPMT (Subfamily III), 22 VvERDL6 (Subfamily 
IV), 2 VvVGT (Subfamily V), 3 VvINT (Subfamily VI), 
and 4 VvpGlcT/VvSGB1 (Subfamily VII) (Afoufa-Bastien 
et  al. 2010). During berry development, the transcript 

Fig. 3   The hypothetical model of sugar transporters involved in sugar accumulation in the grape berries. MC, mesophyll cell; PC, parenchyma cell; 
CC, Companion cell; CBB, calvin-benson-bassham; CWINV/Inv-CW, cell wall invertase; VINV, vacuolar invertase; NINV, neutral invertase; SUT, sucrose 
transporter; SWEET, sugars will eventually be exported transporter; VvHT, hexose transporter; VvTMT, tonoplast monosaccharide transporter
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levels of VvHT3 and VvHT6 are significantly higher than 
VvHT1, VvHT2, VvHT4 and VvHT5. (Hayes et  al. 2007; 
Afoufa-Bastien et al. 2010). The VvHT1, VvHT2, VvHT4 
and VvHT5 are most lowly expressed through the grape 
berry development period (Hayes et  al. 2007; Afoufa-
Bastien et al. 2010). Notably, the expression of VvHT3 is 
reduced at véraison but elevated highly in pre-véraison 
and post-véraison (Hayes et al. 2007). The expression of 
VvHT1 is strong shortly after anthesis but decreased dur-
ing the period of rapid sugar accumulation (Hayes et al. 
2007). VvHT6 expression remained high throughout the 
ripening process (Afoufa-Bastien et  al. 2010). Immuno-
fluorescence, immunolabeling and GFP fusion protein 
experiments revealed the plasma membrane localiza-
tion of VvHT1, VvHT4, and VvHT5. VvHT1 exhibited 
higher glucose affinity and broader substrate specificity 
than VvHT4 and VvHT5, recognizing both D-glucose 
and D-fructose. VvHT3 was not capable of importing 
any sugar in mutant yeast strains (Vignault et  al. 2005; 
Conde et al. 2006; Hayes et al. 2007). VvHT2 and VvHT6/
VvTMT2 appear to be localized to the tonoplast, with 
VvHT6/VvTMT2 showing high sequence similarity to 
AtTMT2 (Agasse et al. 2009; Afoufa-Bastien et al. 2010). 
VvTMT1 and VvTMT2 exhibit higher expression levels in 
berries (Afoufa-Bastien et  al. 2010). VvTMT2 is notably 
high expressed at the onset of ripening and post-vérai-
son stages in V. vinifera ‘Sultanine’ berries (Cakir et  al. 
2012). The fusion expression of VvTMT1-GFP in yeast 
demonstrated tonoplast localization, and VvTMT1 glu-
cose uptake was heterologously assessed by yeast hexose 
transporter mutants (Zeng et al. 2011). The various local-
ization and affinity for substrate among these monosac-
charide transporters suggest that their functions of sugar 
transport are diverse.

Reinders reported that AtSUTs can be divided into 
three types: Type I, which includes AtSUC1, 2, 5, 6, 
7, 8, and 9; Type II includes AtSUC3; Type III includes 
AtSUC4 (Reinders et  al. 2012; Wen et  al. 2022). SUT/
SUC transporters primarily transport sucrose into the 
SE-CC complex (Scofield et  al. 2007; Slewinski et  al. 
2009, 2010; Wang et  al. 2021). Expression of AtSUC2 
can enhance sucrose loading in rice, thereby resulting in 
larger grains and improved crop yield (Wang et al. 2015). 
Suppressing tomato SUT1 (Hackel et al. 2006), knocking 
out rice SUT1 (Wang et al. 2021), and expressing SUT1 in 
pea (Lu et al. 2020), have indicated that SUT/SUC class 
transporters are crucial for phloem loading. Arabidop-
sis AtSUC5 enables sucrose inflow into the endosperm, 
ultimately providing nutrition to the embryo (Baud et al. 
2005). In seeds, OsSUT1/3/4, localized to the starchy 
layer, can transport sucrose into seeds to enhance sucrose 
unloading (Furbank et  al. 2001; Bai et  al. 2016). Sugar-
cane SUT5 and SUT6 are highly expressed in source 

leaves, aiding phloem loading (Zhang et al. 2016), SUT1 
does not participate in phloem unloading but is involved 
in recycling sucrose leaked into the apoplast back to the 
vascular parenchyma cells (Glassop et  al. 2017). Maize 
SUC4 is localized to the tonoplast and can export sucrose 
from vacuoles (Carpaneto et  al. 2010; Schneider et  al. 
2012). Furthermore, AtSUC5 can also transport biotin 
(Ludwig et  al. 2000), and AtSUC9 is able to transport a 
wide range of glucosides (Sivitz et al. 2007).

VvSUTs (VvSUC2, VvSUC11, VvSUC12, and VvSUC27) 
in different Vitis varieties focus on the expression, locali-
zation, function and regulation. VvSUC2 exhibits low 
expression levels or not detected across various tis-
sues and organs. VvSUC27 is ubiquitously expressed in 
vegetative organs while is weakly expressed in berries 
(Afoufa-Bastien et al. 2010). The expression of VvSUC11 
and VvSUC12 are relatively low in berries but stays stable 
during the ripening stages (Afoufa-Bastien et  al. 2010). 
VvSUC12 and VvSUC27 were also expressed in seeds but 
at a lower level (Afoufa-Bastien et  al. 2010). VvSUC11 
and VvSUC12 with high-affinity/low-capacity to sucrose, 
control sugar distribution. VvSUC11, VvSUC12, and 
VvSUC27 can form homodimers and heterooligomers 
to guide the rapid transport of sucrose in SE (Cai et  al. 
2021). VvSUC27 is localized on the plasma membrane. 
Overexpressing VvSUCs (VvSUC11 or VvSUC12 or 
VvSUC27) in tobacco and Arabidopsis showed that the 
plants grew faster, had increased yield, and enhanced 
stress resistance (Cai et  al. 2017, 2020). Similarly, SUTs 
in grape “Zuoshan-1” responded to various stresses, pro-
moting sucrose metabolism and hormone synthesis (Cai 
et al. 2019). However, the research of VvSUTs function is 
still predominantly conducted in heterologous systems, 
such as Arabidopsis, tobacco. In fact, a direct assessment 
of their roles in sugar accumulation in grape berries is 
limited or almost non-existent. This gap highlights the 
need for more research in grape berries to fully under-
stand the contributions of VvSUTs in sugar accumulation 
and ripening.

SWEETs are a novel transporter family in plants 
involved in cellular sugar efflux (Chen et  al. 2010), pri-
marily transporting substrates such as glucose, fruc-
tose, and sucrose (Chardon et  al. 2013; Klemens et  al. 
2013; Eom et  al. 2015). In angiosperms, there are an 
average of 20 SWEET family members, which are dif-
ferentially expressed across diverse tissues and organs. 
In Arabidopsis, SWEET members are phylogeneti-
cally divided into four clades, with Clade I (SWEET1-
2), Clade II (SWEET3-8), and Clade IV (SWEET16-17) 
mainly transporting monosaccharides, whereas Clade 
III (SWEET9-15) mainly transports sucrose (Chen et al. 
2010, 2015). SWEET transporters can be localized in 
various subcellular compartments: SWEET1, 8, 9, 11, 12, 
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and 15 are primarily localized to the plasma membrane 
(Seo et  al. 2011; Kryvoruchko et  al. 2016), SWEET2, 
16, and 17 to the tonoplast (Chardon et  al. 2013; Kle-
mens et al. 2013; Guo et al. 2014; Chen et al. 2015), and 
SWEET9 to the Golgi membrane (Lin et al. 2014; Chen 
et  al. 2015). SWEET proteins are involved in various 
functions including plant carbon partitioning, pollen 
nutrition supply, seed development, organ senescence, 
hormone transport and interactions between plants and 
pathogens (Chen et al. 2015; Hutin et al. 2015; Ho et al. 
2019; Ni et al. 2020; Braun 2022; Xue et al. 2022; Radchuk 
et al. 2023). As research continues to deepen, the regula-
tory networks of SWEET proteins and their potential in 
improving crop yield and stress resistance are expected 
to be more comprehensively assessed and utilized.

In grapevine, there are 17 SWEET homologues, among 
which among which VvSWEETs (VvSWEET1, VvS-
WEET2a, VvSWEET2b, VvSWEET4, VvSWEET7, VvS-
WEET10, VvSWEET15 and VvSWEET17a) have been 
identified as being expressed during grape berries devel-
opment. Among them, VvSWEET1, VvSWEET2a, VvS-
WEET2b, VvSWEET10, VvSWEET15, and VvSWEET17a 
displayed higher expression in Chardonnay berries than 
those in other organs (Zhang et  al. 2019). VvSWEET10 
is highly expressed in véraison (Zhang et al. 2019). Spe-
cifically, VvSWEET15 is strongly expressed in both vérai-
son and post-véraison in Chardonnay berries and the 
expression level is much higher than that of VvSWEETs 
(VvSWEET1, VvSWEET2a, VvSWEET2b, VvSWEET10, 
VvSWEET15 and VvSWEET17a) (Zhang et  al. 2019). 
VvSWEET10, a plasma membrane transporter, was found 
to significantly increase glucose, fructose, and total sugar 
content when overexpressed in grape callus and tomato 
(Zhang et  al. 2019). VvSWEET15 was highly expressed 
in the three grape varieties and was positively corre-
lated with the hexose content during ripening (Ren et al. 
2020). In our research, VvSWEET10 and VvSWEET15 
exhibit notably high expression level in grape berry and 
an in-depth gene-silencing and overexpressing studies of 
VvSWEET15 demonstrate that VvSWEET15 facilitates 
hexose accumulation at post-véraison stages (unpub-
lished data). Future research is required to explore these 
potential roles and deepen understanding of the molecu-
lar mechanisms underlying grape ripening and sweet-
ness. VvSWEET4 is lowly expressed in small green berry 
and pre-version green berry, but is highly expressed 
in post-version berry of V. vinifera 40,024 (Chong et  al. 
2014). VvSWEET4 is a glucose transporter located on the 
plasma membrane (Chong et  al. 2014). Overexpression 
of VvSWEET4 in grapevine root hairs led to increased 
glucose content in the root hairs, upregulation of genes 
in the flavonoid biosynthetic pathway, and enhanced 
resistance to soil pathogen infection (Meteier et al. 2019). 

VvSWEET7 is highly expressed during both the green 
berry phase and ripening phase in Trincadeira grapes and 
is able to transport monosaccharides, disaccharides, and 
polyols (Breia et al. 2020). VvSWEET7 may participate in 
plant defense by rapidly removing pathogen-synthesized 
mannitol from the extracellular space (Breia et al. 2020). 
The expression of VvSWEET2a, VvSWEET7, and VvS-
WEET15 increases significantly when grapes are infected 
by Botrytis cinerea, whereas different developmental 
stages of infection downregulate the expression of VvS-
WEET10, 11, 17a, and 17d (Breia et al. 2020).

Sugar transporters present a complex, critical network 
essential for sugar accumulation in grape berries. The 
precise expression patterns of these transporters—coor-
dinated with development stages, specificity for sugar 
substrates, and cellular localization—reflect the intricate 
control of sugar distribution within the berry. The cur-
rent understanding of sugar transport proteins in grape 
berries is limited due to restrictions in transgenic sys-
tems, leaving their exact functions somewhat unclear. 
However, to enhance our knowledge of the role of sugar 
transport proteins in sugar accumulation in grape ber-
ries, we have objectively organized the existing data into 
a hypothetical model (Fig.  3). Given that VvSUC12 has 
two structural features unique to the SUT2/SUC3 sub-
family (including AtSUC3), which shares a 66.6% similar-
ity with AtSUT3 and is expressed in mature grape leaves, 
it is hypothesized to be involved in loading sucrose into 
the phloem SE-CC complex, akin to AtSUT3’s function 
in sucrose funneling from the mesophyll towards the 
phloem (Meyer et  al. 2000; Afoufa-Bastien et  al. 2010) 
(Fig.  3). VvSWEET17a, with high expression in mature 
leaves, might function similarly to AtSWEET11 and 12, 
facilitating sucrose across the plasma membrane from 
mesophyll cells to the apoplastic space (Chen et al. 2012) 
(Fig.  3). This suggests that SWEET17a carries sucrose 
across the plasma membrane and VvSUT12 further move 
it into the phloem.

Subsequently, sucrose is transported long distances 
through the phloem and eventually reaches the unload-
ing phloem. Here, it is speculated that sucrose is released 
into the apoplastic space through VvSUT11, VvSUT12, 
and VvSWEET10 (Fig.  3). The functions of VvSUT11 
and VvSUT12 are similar to the sucrose efflux functions 
of homologs AtSUT4 (belongs to the SUT4 subfamily, 
including AtSUC4) and AtSUT3 respectively (Manning 
et  al. 2001; Afoufa-Bastien et  al. 2010). The function of 
SWEET10 in sucrose transport has been demonstrated in 
sucrose-deficient yeast (unpublished data from our labo-
ratory) (Fig. 3). Most studies suggest that released sucrose 
is mainly translocated through symplastic transport via 
plasmodesmata and eventually accumulates hexoses 
via plasma membrane-located HTs, as well as vacuolar 
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membrane transporters-located TMTs and HTs at pre-
véraison (Breia et al. 2021; Braun et al. 2022; Wen et al. 
2022; Ren et al. 2023). At this stage, the HTs are hypoth-
esized to be VvHT3/VvHT7 and VvHT6, the TMTs are 
VvTMT1 and VvTMT2, according to their transcriptome 
data (Afoufa-Bastien et al. 2010; unpublished expressing 
data from our laboratory) (Fig. 3). After véraison, part of 
the released sucrose is degraded into hexoses by cell wall 
invertase (CWINV) and neutral invertase (NINV), which 
are then transported across the plasma membrane by 
VvHT6 and VvSWEET15, and across the vacuolar mem-
brane by VvTMT1, VvTMT2, VvHT6, and VvSWEET15, 
ultimately accumulating hexoses in the vacuole (Hayes 
et  al. 2007; Afoufa-Bastien et  al. 2010; unpublished 
expressing data from our laboratory) (Fig.  3). This nar-
rative reflects a hypothesis based on the current limited 
data and requires further research for confirmation.

Overall, the development of grape berries is character-
ized by the continuous accumulation of sugars, which 
forms many important carbohydrates in mature berries 
and ultimately dictates berry yield and quality (Smeekens 
2000; Rolland et al. 2002). In grapevine, sugar is exported 
from source leaves and eventually accumulates in the FCs 
through symplastic and apoplastic pathways. Sucrose 
is synthesized in the photosynthetic mesophyll cells of 
leaves and loaded into phloem sieve tubes via symplas-
tic or apoplastic loading pathways, which is propelled 
by hydrostatic pressure. After long-distance transport, 
sucrose is unloaded at the site of CCs and transported 
into the apoplastic space, subsequently either trans-
ported by VvSUTs on the plasma of PCs or cleaved into 
hexoses by CWINV or SS (Chen et  al. 2017; Wan et  al. 
2018; Duan et  al. 2020). These hexoses are later trans-
ported into the FCs through specific VvPMTs located on 
the plasma or vacuolar membranes (Grappadelli et  al. 
2019). These processes maintain a sucrose concentra-
tion gradient at unloading sites, ensuring rapid unload-
ing and accumulation of hexose (Lecourieux et al. 2014). 
Research indicates that the phloem unloading pathway in 
berries undergoes a transition during berry development, 
shifting from symplastic to apoplastic unloading pathway 
around the time of véraison (Zhang et al. 2006). As grape 
berries develop into the post-véraison stage, the depo-
sition of callose blocks plasmodesmata, resulting in the 
symplastic isolation of between CCs and PCs/FCs (Zhang 
et  al. 2006). This isolation only allows sucrose to be 
unloaded through VvSUTs on the CC plasma membranes 
into the apoplastic space, where hexose ultimately trans-
ported into the FCs via apoplastic unloading pathways. 
Thus, sugar transporters and enzymes associated with 
sugar metabolism together form a complex regulatory 
network that governs sugar accumulation in grape ber-
ries. Understanding these intricate interactions between 

sugar transporters and various metabolic pathways ena-
bles researchers to devise strategies for manipulating 
sugar distribution and metabolism, which can enhance 
fruit quality and prolong shelf life.

Regulatory factors influencing sugar accumulation
Despite extensive research on the function of sugar trans-
porters in various plant species, reports focusing on the 
transcriptional and post-translational regulation of these 
proteins are relatively scarce. The current knowledge pre-
dominantly addresses transcriptional regulation of a lim-
ited number of transporter genes and less is known about 
the post-translational control mechanisms that modulate 
transporter activity.

Sugar transporters at transcription level only concen-
trated on minority. For instance, in grapevine, the interac-
tion between VvMSA and the VvHT1 promoter indicates 
a positive regulation of VvHT1 promoter activity (Çakir 
et  al. 2003). The R2R3-type MYB96 transcription fac-
tor directly binds to the STP13 promoter activating its 
expression, which induces sugar uptake and enhances 
plant tolerance to adverse environmental challenges (Lee 
and Seo 2021). In watermelon, the transcription factor 
SUSIWM1 positively regulates ClTST2 gene, promot-
ing the accumulation of sucrose, glucose, and fructose in 
the flesh cell vacuoles (Ren et al. 2018). In rice, NF-YB1 
influences the expression of OsSUT1/3/4 located in the 
aleurone layer, intensifying sucrose unloading (Furbank 
et al. 2001; Bai et al. 2016). The OsDOF11 transcription 
factor binds to the promoter regions of OsSUT1, OsS-
WEET11, and OsSWEET14 enhancing the expression 
of these genes, thereby affecting sugar transport in rice. 
The mutant Osdof11 exhibits dwarfed stature, reduced 
tillering, insensitivity to sucrose-mediated root growth 
inhibition, reduced sugar accumulation in leaves, and 
diminished phloem sucrose flow. The ABA-responsive 
transcription factor OsbZIP72 can bind to the promoter 
regions of OsSWEET13 and OsSWEET15, activating their 
expression in response to drought stress (Mathan et  al. 
2021). In cotton, the transcription factor GhMYB212 
binds to the GhSWEET12 promoter, promoting its 
expression to regulate the carbon supply required for cot-
ton fiber elongation (Sun et al. 2019). Within pear fruit, 
PuWRKY31 directly binds to the PuSWEET15 promoter, 
upregulating its expression and enhancing high sucrose 
accumulation in the fruit of high-sugar bud sports (Li 
et  al. 2020). The lily transcription factor LoABF2 (an 
AREB/ABF binding factor) can bind to the LoSWEET14 
promoter, inducing LoSWEET14 expression and partici-
pating in the ABA signaling pathway to promote soluble 
sugar accumulation in response to various abiotic stresses 
(Zeng et al. 2022). The VvMYB15 transcription factor is 
implicated activating the expression of VvSWET15 (Li 
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et al. 2022). In apple (Malus × domestica) variety “Gala”, 
MdWRKY9 which bound to the MdSWEET9b pro-
moter interacted with MdbZIP23 (basic leucine zipper) 
and MdbZIP46, and upregulated MdSWEET9b expres-
sion, thereby influenced apple fruit sugar accumulation 
(Zhang et al. 2023).

Post-translational research on sugar transporters pri-
marily focuses on control by kinases and phosphatases. 
For example, the expression of monosaccharide trans-
porters (VvHT3, VvHT4, VvHT5, and VvHT6) in grape-
vine is regulated by protein kinases (VvSK1), modulating 
sugar intake and accumulation (Lecourieux et  al. 2010). 
Glucose can inhibit the transcription of VvHT1 via a pro-
cess dependent on hexokinase (HXK) and can reduce the 
abundance of VvHT1 protein in the plasma membrane 
through HXK-mediated post-translational modifica-
tions (Conde et al. 2006). In Arabidopsis, the wall-asso-
ciated kinase AtWAKL8 acts as a positive regulator of 
AtSUC2, capable of phosphorylating AtSUC2 thereby 
enhancing its sucrose-binding capacity (Xu et  al. 2020). 
The ethylene-responsive transcription factor MaRAP2-4 
activates the expression of the Arabidopsis SWEET10, 
modulating sugar accumulation to increase waterlogging 
tolerance and enhance the drought and salt tolerance of 
the Lamiaceae species (Mentha arvensis) (Phukan et  al. 
2018). Additionally, the transport activity of sugar trans-
porters can be regulated through interaction with bind-
ing proteins. In potato, the interaction between StSP6A 
and StSWEET11 prevents the leakage of sucrose into the 
apoplastic space during tuber development and leads to 
reduced transport activity of StSWEET11 when bound to 
StSP6A in protoplasts and yeast (Abelenda et  al. 2019). 
Rice copper transporters (OsCOPT1 and OsCOPT5) 
interact with OsSWEET11 to modulate copper distri-
bution during infection with Xoo, although it is not yet 
clear if this interaction affects the sugar transport of OsS-
WEET11 (Yuan et al. 2010).

The transcriptional and post-translational regulation 
of sugar transporters uncover a complex network dictat-
ing the functional state of these proteins. Transcription 
factors orchestrate the transcriptional response to devel-
opmental cues and environmental stimuli, while kinases 
and phosphatases finely tune transporter activity to adapt 
to cellular needs. As research progresses, elucidating the 
precise dynamic regulatory mechanisms will be crucial 
for a more comprehensive understanding of sugar trans-
port in plants, especially in grapevine, with implications 
for agricultural productivity and stress resilience.

Environmental factors influencing sugar accumulation
Temperature poses significant threats to viticulture 
in current and future global climate change scenarios 
(Venios et al. 2020). Temperature significantly influences 

grapevine metabolism and consequently sugar accu-
mulation in grapes. Warmer temperatures accelerate 
the rate of sugar accumulation (measured in Brix) by 
enhancing photosynthetic activity in leaves, which leads 
to increased sugar production and transport to the ber-
ries (Stanfield et  al. 2024). However, the highest qual-
ity wine is produced when the berries simultaneously 
achieve optimal sugar-to-acid ratios and maximum levels 
of pigments, aromas, and flavors (Gladstones 2011). High 
temperatures accelerate sugar accumulation in grape ber-
ries, leading growers to harvest early to avoid producing 
overly sweet, flat-tasting wines with high alcohol content, 
although the berries have not yet reached optimal flavor 
development (Delrot et al. 2020). This creates a challenge 
for winemakers because the sugars and flavors contents 
develop at different rates. To address this issue, growers 
select grape cultivars from hotter wine regions that pos-
sess traits enhancing hydraulic resistance. This adapta-
tion helps improve wine quality by slowing the rate of 
sugar accumulation (Stanfield et al. 2024).

Sunlight exposure plays a pivotal role in shaping the 
quality of grape bunches and berries, significantly affect-
ing the physiological and metabolic pathways of grape-
vines and ultimately influencing sugar accumulation in 
grapes (Friedel et al. 2015). Increased sunlight exposure 
boosts photosynthesis rates, potentially enhancing sugar 
availability for berry development. Berries that are fully 
exposed to sunlight tend to have smaller diameters and 
higher total soluble solids (up to 22.4 Brix) with lower 
acidity and juice pH compared to those in partial or com-
plete shade (Somkuwar et  al. 2023). This exposure also 
increases levels of hydroxybenzoic acid, gallic acid, ellagic 
acid, and anthocyanins, while decreasing flavan-3-ols and 
amino acids compared to shaded berries (Downey et al. 
2004; Somkuwar et al. 2023). In contrast, shaded bunches 
show higher proline concentrations, underlining the pro-
found impact of sunlight on the biochemical composi-
tion and quality of grape berries (Moukarzel et al. 2023). 
Additionally, the temperature of berry skins, elevated by 
direct sunlight, affects enzymatic activities crucial for 
sugar metabolism. Sunlight also influences the expression 
of genes involved in sugar transport and metabolism, 
further impacting sugar accumulation (Moukarzel et  al. 
2023). However, excessive sunlight or heat can cause det-
rimental effects like berry sunburn and reduced photo-
synthetic efficiency, potentially diminishing sugar content 
of berries (Gambetta et  al. 2021). Therefore, achieving 
optimal sunlight exposure through proper vineyard man-
agement practices such as leaf removal, shoot position-
ing, and vine spacing is essential for maximizing sugar 
content and enhancing grape quality, which are vital for 
the final quality of wine (Smart 1985; Palliotti et al. 2011; 
Reynolds 2022).
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Genetic diversity of sugar accumulation in grape berries
Within the Vitis genus, there is considerable genetic vari-
ability in both sugar composition and concentration. the 
total sugar concentration, commonly quantified as total 
soluble solids (TSS), ranges from 18.7 to 27 Brix at matu-
rity across 78 cultivars of Vitis vinifera, which includes 
both table grape and wine grape varieties (Kliewer 
1967a). Kliewer found a broader variation among 26 Vitis 
species from North America and the Middle East, with 
TSS at maturity spanning from 13.7 Brix in V. champi-
nii to 31.5 Brix in V. riparia from Wyoming (Kliewer 
1967b). Furthermore, among 18 Eurasian grape species in 
Xinjiang region, the TSS at maturity have been reported 
to vary widely, from as low as14.9 Brix in Victoria to as 
high as 25.1 Brix in Summer Black (Zhong et  al. 2023). 
In terms of specific sugar types, all cultivars primarily 
accumulate glucose and fructose, typically glucose con-
tent ranging from 42.13 to 46.80% of the total sugar and 
the fructose contents varied from 42.68 to 50.95%, while 
exhibiting very low levels of sucrose which varied from 
6.17 to 12.69% (Zhong et  al. 2023). Conversely, V. labr-
usca and V. rotundifolia, along with their interspecific 
hybrids, are noted for higher sucrose levels, ranging from 
5 to 58.28  g/L, along with moderate concentrations of 
glucose and fructose (from 35 to 54 g/L), marking a dis-
tinct contrast in sugar profiles (Dai et al. 2011).

Cultivated V. vinifera has a significantly higher concen-
tration of soluble sugars compared to wild Vitis species. 
To explore how gene variations related to sugar metabo-
lism and transport contribute to the higher sugar accu-
mulation in cultivated V. vinifera compared to wild Vitis 
species, the genomes of 14 V. vinifera and 13 wild species 
were resequenced (Xin et  al. 2013). Eleven gene fami-
lies pertinent to sugar metabolism, identified from the 
V. vinifera 12 X genome, included two families involved 
in sucrose synthesis: SPS and SPP. SPS synthesizes 
sucrose 6-phosphate using UDP-glucose and D-fructose 
6-phosphate, which SPP then converts into sucrose. This 
sucrose is further processed into UDP-glucose and fruc-
tose by sucrose synthase (SUSy), and into glucose and 
fructose by invertase (INV). Invertases, categorized into 
three subfamilies based on their biochemical properties 
and subcellular locations, play key roles in these con-
versions (Sturm 1999; Nonis et  al. 2008). Additionally, 
seven enzymes associated with glycolysis were identified, 
including FK, HK, and others (Xin et  al. 2013). Along-
side sugar transporter genes reported in grapes, 138 
DNA regions on the V. vinifera genome were examined 
to assess the impact of domestication on sugar content in 
grapes (Afoufa-Bastien et al. 2010; Xin et al. 2013).

Rapid progress in DNA sequencing and genotyping 
has enabled more effective Whole Genome Amplifica-
tion (WGA) studies, especially in species with sparse 

genetic data (Lijavetzky et  al. 2007; Pindo et  al. 2008; 
Xia et  al. 2009; Lam et  al. 2010; Dong et  al. 2023). This 
has led to a significant increase in the identification of 
genetic variations like SNPs and InDels, which are cru-
cial for understanding genetic diversity and relation-
ships across different accessions (Myles et  al. 2011). A 
recent study analyzed the genetic diversity of grapevine 
by resequencing genomic DNA from 27 V. vinifera and 
wild Vitis species, producing 46.9 Gb of DNA sequences 
(Xin et  al. 2013). Despite a low alignment rate with the 
reference genome, possibly due to its incompleteness or 
the substantial genetic variation between the samples 
and the reference, the researchers identified thousands of 
SNPs and InDels that suggest significant genetic diversity 
and divergence due to domestication (Xin et  al. 2013). 
They discovered genes involved in sugar metabolism 
that exhibited considerable differences in SNPs/InDels 
between wild and cultivated grapes, underscoring the 
role of these genes in grape berry development and sugar 
accumulation (Xin et  al. 2013). This genetic exploration 
not only enhances our understanding of influence of arti-
ficial selection on grapevine genetics biological mecha-
nisms underlying sugar accumulation but also provided 
insights into the evolutionary dynamics that continue to 
shape this species.

Conclusion
The journey from flowering to the harvest of sweet ripe 
grape berries results depends on the supply of sugars, on 
a complex interplay between acid and sugar metabolism, 
the efficiency of sugar transport systems, and regulatory 
factors orchestrating these processes (Lucas et  al. 2013; 
Griesser et  al. 2024). While considerable progress has 
unraveled various sugar metabolism pathways and func-
tion of the enzymes, the roles and regulation of sugar 
transport proteins (SUC, HT, TMT, SWEET) in diverse 
fruit crops, their cellular localization, and the exact oper-
ational dynamics of these proteins within fruit tissues 
largely remain elusive (Lecourieux et  al. 2014; Li et  al. 
2021; Ren et  al. 2023). Enhanced knowledge on these 
fronts bears the promise of paving the way for advancing 
grapevine cultivation, enology, and viticultural practices.
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