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A LlMYB305‑LlC3H18‑LlWRKY33 module 
regulates thermotolerance in lily
Ze Wu1,2,3, Jiahui Liang4, Ting Li1,2, Dehua Zhang1,2 and Nianjun Teng1,2* 

Abstract 

The CCCH proteins play important roles in plant growth and development, hormone response, pathogen defense 
and abiotic stress tolerance. However, the knowledge of their roles in thermotolerance are scarce. Here, we identi-
fied a heat-inducible CCCH gene LlC3H18 from lily. LlC3H18 was localized in the cytoplasm and nucleus under normal 
conditions, while it translocated in the cytoplasmic foci and co-located with the markers of two messenger ribonu-
cleoprotein (mRNP) granules, processing bodies (PBs) and stress granules (SGs) under heat stress conditions, and it 
also exhibited RNA-binding ability. In addition, LlC3H18 exhibited transactivation activity in both yeast and plant cells. 
In lily and Arabidopsis, overexpression of LlC3H18 damaged their thermotolerances, and silencing of LlC3H18 in lily 
also impaired its thermotolerance. Similarly, Arabidopsis atc3h18 mutant also showed decreased thermotolerance. 
These results indicated that the appropriate expression of C3H18 was crucial for establishing thermotolerance. Further 
analysis found that LlC3H18 directly bound to the promoter of LlWRKY33 and activated its expression. Besides, it 
was found that LlMYB305 acted as an upstream factor of LlC3H18 and activated its expression. In conclusion, we dem-
onstrated that there may be a LlMYB305-LlC3H18-LlWRKY33 regulatory module in lily that is involved in the establish-
ment of thermotolerance and finely regulates heat stress response.
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Core
Lily heat-inducible CCCH gene LlC3H18 is directly acti-
vated by LlMYB305, and its protein is partially localized in 
the nucleus to act as a transcription activator of LlWRKY33, 
thus forming a LlMYB305-LlC3H18-LlWRKY33 regulatory 

module. LlC3H18 can also locate in the cytoplasm foci 
under high temperature conditions, and play a role of 
RNA-binding protein to form mRNP granules for finely 
regulating heat stress response.

Gene and accession numbers
Sequence data from this article can be found in the data-
base of the National Center for Biotechnology Information 
(NCBI) under the accession numbers: LlC3H18 (OR094243), 
LlMYB305 (MW383251), LlWRKY33 (OR094247).

Introduction
With the development of industry, a large amount of 
fossil energy is used, the emission of carbon dioxide 
increases year by year, the trend of global warming is 
inevitable, and more and more abnormally high tempera-
ture weather occurs frequently (Grover et al. 2013; Wahid 
et  al. 2007). As sessile organisms, plants are difficult to 
escape the adverse effects of environmental changes 
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and are extremely sensitive to temperature changes, 
especially for some horticultural crops and food crops; 
high temperature often leads to reduced yield and qual-
ity (Teixeira et al. 2013). Many studies have proved that 
transcription factors (TFs) play an important role in the 
regulation of plant thermotolerance (Ohama et al. 2017). 
It may be feasible to improve thermotolerance in crops 
by screening heat-resistant regulators and genetic engi-
neering methods.

The CCCH proteins are a class of proteins with zinc 
finger (ZNF) domains, many of which can function as 
TFs to regulate the expression of target genes (Pomer-
anz et al. 2011; Wang et al. 2008). The CCCH proteins 
contain 1–6 CCCH-type ZNF motifs which is consist 
of three Cys residues and one His residue (C-X5-14-C-
X4-5-C-X3-H)(Wang et  al. 2008). In Arabidopsis, there 
are 68 CCCH members and they are classified into 
11 subfamilies based on the spacing between Cys and 
His in the ZNF motifs as well as the number of ZNF 
motifs (Wang et al. 2008). In addition, CCCH proteins 
are divided into tandem CCCH-type zinc finger (TZF) 
and non-TZF proteins: TZF proteins contain two tan-
dem CCCH-type ZNF motifs whereas non-TZF pro-
teins have fewer or greater than two CCCH-type ZNF 
motifs (Bogamuwa and Jang 2014; Seok et  al. 2018). 
Except the ZNF domain, some members of CCCH fam-
ily also had a LOTUS/OST-HTH (Limkain, Oskar, and 
TUdor-containing proteins 5 and 7) domain and an 
RRM (RNA-recognition motif ) domain, both are puta-
tive RNA-binding domains, so they are always puta-
tive RNA-binding proteins for post-transcriptional 
regulation (Pomeranz et al. 2010b; Xu et al. 2022). For 
AtTZF1, the TZF motif is important for RNA binding 
in a zinc-dependent fashion (Pomeranz et  al. 2010b; 
Qu et  al. 2014). Moreover, AtCPSF30/AtC3H11 and 
AtSmicl bind to RNA and have nuclease activity (Adde-
palli and Hunt 2008). However, it was also reported that 
plant CCCH proteins function in transcriptional regu-
lation. AtC3H14 and AtC3H15 regulate transcription 
through DNA-binding and they exhibit transactivation 
activity in yeast (Chai et  al. 2015). In plants, CCCH 
proteins are a kind of regulators playing significant 
roles in plant growth, development, hormone response, 
defense pathogens, and resist to abiotic stresses 
(Bogamuwa and Jang 2014; Han et  al. 2021). AtTZF2/
AtOZF1, AtTZF3/AtOZF2, and cotton GhZFP1 are 
all associated with jasmonic acid-induced leaf senes-
cence (Guo et  al. 2009; Lee et  al. 2012). AtTZF4, 
AtTZF5, and AtTZF6 positively regulate abscisic acid 
(ABA) response and play roles in seed germination 
and embryo formation, and AtC3H17 has pleiotropic 
effects on vegetative development, flowering, and seed 

development in Arabidopsis (Bogamuwa and Jang 2013; 
Seok et al. 2016). AtC3H14 and AtC3H15 are involved 
in the regulation of cell elongation, secondary wall 
thickening, male fertility, anther development, and 
acquisition of immunity against pathogens (Chai et  al. 
2015; Wang et  al. 2022a, 2020). Poplar PdC3H17 and 
PdC3H18 positively regulate secondary wall formation 
in poplar (Chai et  al. 2014). AtC3H11 is a subunit of 
polyadenylation factor and is required for Pseudomonas 
resistance (Bruggeman et  al. 2014). Pepper CaC3H14 
positively regulates the response of inoculation by Ral-
stonia solanacearum (Qiu et al. 2018). OsLIC promotes 
downstream OsWRKY30 for rice resistance to bacterial 
blight and leaf streak (Wang et al. 2022b). In addition, a 
number of CCCH proteins, such as AtTZF1, GhZFP1, 
GhTZF1, OsTZF1, AtSZF1/2, OsC3H47, PvC3H72, 
and OsDOS were found as important regulators for 
plant responses to salt, drought, cold, and oxidative 
stresses (Guo et  al. 2009; Jan et  al. 2013; Kong et  al. 
2006; Lin et al. 2011; Sun et al. 2007; Wang et al. 2015; 
Xie et  al. 2019; Zhou et  al. 2014). AtSZF1/AtTZF11 
and AtSZF2/AtTZF10 negatively regulate salt stress 
response (Sun et al. 2007), whereas AtC3H17 functions 
as a positive regulator in salt stress response (Seok 
et  al. 2018). Overexpression of AtTZF2/AtOZF1 or 
AtTZF3/AtOZF2 has shown to confer ABA hypersen-
sitivity and drought tolerance (Lee et al. 2012). In rice, 
the expression of OsTZF1 is up-regulated by drought, 
salt stress, and hydrogen peroxide, which overexpres-
sion improves tolerance to salt and drought stresses and 
vice versa for knockdown plants (Jan et al. 2013). Over-
expression of cotton GhZFP1 enhances tolerance to 
drought and delays drought-induced senescence (Guo 
et al. 2009). The atc3h11 mutant alters the poly(A) site 
choice and mRNA profile, and enhances the tolerance 
to oxidative stress (Hunt et al. 2008). Functional studies 
have revealed that some CCCH proteins are engaged 
in the regulation of abiotic stress responses. However, 
there has been no report on CCCH proteins’ involve-
ment in plant thermotolerance and signal transduction 
to date.

Here, we reported the isolation and functional charac-
terization of lily LlC3H18, which was induced under heat 
stress (HS) conditions. LlC3H18 was co-localized with 
processing body (PB) and stress granule (SG) markers 
under HS conditions, and it also showed transactivation 
activity in yeast and plant cells. LlC3H18 could activate 
the expression of LlWRKY33 by binding its promoter. 
Further analysis showed that the appropriate expression 
of LlC3H18 played a required role in thermotolerance, 
and it might function as a target of LlMYB305.



Page 3 of 17Wu et al. Molecular Horticulture            (2023) 3:15 	

Results
Lily LlC3H18 encodes a non‑TZF CCCH protein 
that is activated by high temperature
By analyzing the transcriptome data of HS-treated lily 
leaves, we obtained a CCCH-type gene, LlC3H18, which 
was differentially expressed under normal and high tem-
perature conditions (Fig. S1). Based on the transcriptome 
data, the ORF of LlC3H18 was cloned from lily ‘White 
heaven’, and it was 1728 bp and was speculated to encode 
a non-TZF protein containing 575 amino acids. Through 
phylogenetic tree analysis with the CCCH proteins of 
Arabidopsis, the results showed that LlC3H18 is most 
closely related to AtC3H18 (Fig. S2), so it was named 
LlC3H18. The phylogenetic tree analysis was performed 
with C3H18 homologies from other plant species, the 
results showed that LlC3H18 clustered with monocots’ 
C3H18 and was most closely related to EgC3H18 of oil 
palm (Elaeis guineensis) (Fig.  1A). Alignment of protein 
domains found that LlC3H18 contained a conserved 
C-X7-C-X5-C-X3-H type CCCH domain and two puta-
tive RBDs (RNA-binding domains), LOTUS (Limkain, 
Oskar, and TUdor-containing proteins 5 and 7) and 
RRM (RNA-recognition motif ) (Fig. S3). After HS treat-
ment, the expression of LlC3H18 was continuously acti-
vated by high temperature in lily leaves (Fig.  1B). The 
LlC3H18 promoter was isolated from lily, and its activ-
ity was analyzed by transient transformation in tobacco 
leaves (Fig.  1C). After HS, the expression of the LUC 
reporter driven by the LlC3H18 promoter increased sig-
nificantly (Fig.  1C, D). In addition, a promoter-driven 
proLlC3H18-GUS reporter vector was also constructed, 
and the GUS transgenic Arabidopsis line was obtained; 
it was observed that high temperature could activate the 
activity of LlC3H18 promoter (Fig. 1E, F). According to 
the transient GUS reporter assay in lily petal discs, it was 
observed that the proLlC3H18-GUS activity could be evi-
dently activated by HS (Fig.  1G). Therefore, these data 
indicated that LlC3H18 is a heat-inducible CCCH-type 
protein in lily.

LlC3H18 localizes in cytoplasmic foci in response to heat 
stress
With transiently expression of GFP-LlC3H18 in tobacco 
leaves, in addition to the part GFP signal in the nucleus, 
which was consistent with the distribution of the RFP 
fluorescence of the nucleus marker RFP-NLS, but the 
fluorescence signal of GFP-LlC3H18 was also distributed 
throughout the cytoplasm (Fig. 2A). After HS, excitingly, 
it was observed high temperature changed GFP-LlC3H18 
from being mainly dispersed in the cytoplasm to being 
aggregated into cytoplasmic foci, which was consist-
ent with the distribution of the mCherry fluorescence 
of the PB marker mCherry-DCP2 and the SG maker 

mCherry-PABP8 (Fig. 2A) (Decker and Parker 2012; Xu 
et al. 2022). Due to both PB and SG are the mRNP gran-
ules, so these results indicated that LlC3H18 exhibited 
variable subcellular localization characteristics and may 
play roles in mRNA regulation with RNA-binding abil-
ity. Simultaneously, LlC3H18 also localized in nucleus 
under normal conditions or the recovery period after HS 
(Fig.  2B), which implicated a nucleus–cytoplasm shut-
tling process for LlC3H18-mediated signaling pathways 
and LlC3H18 might also function as a TF with DNA-
binding ability. More CCCH proteins are known to regu-
late target genes by modulating the stability of mRNAs 
containing AU-rich element (ARE) in the 3’-UTRs 
(Pomeranz et  al. 2010b; Qu et  al. 2014; Xu et  al. 2023). 
Then, we performed in  vitro RNA-binding assays using 
GST-LlC3H18 proteins. The result of EMSA showed 
that LlC3H18 could bind to the labeled RNA fragment 
of ARE (Fig. 2C). To test whether LlC3H18 has the func-
tion to modulate the RNA stability in  vivo, we created 
an ARE transcript mimic by fusing ARE to the GFP cod-
ing sequence (referred to as GFP-ARE). The A residues 
in ARE of GFP-ARE were replaced with G to generate a 
negative control (referred to as GFP-MutG) (Brewer et al. 
2004). We next tested the effect of ARE on GFP mRNA 
translation. Co-expressing LlC3H18 and GFP-ARE in 
tobacco leaves generate much lower GFP fluorescence 
than expressing GFP-ARE alone (Fig.  2D, E). However, 
co-expressing mCherry-LlC3H18 and GFP-MutG had 
no effect on the accumulation of GFP fluorescence com-
pared to those expressing GFP-MutG alone (Fig. 2D, E). 
These results indicated that LlC3H18 was able to bind 
RNA.

LlC3H18 exhibits transactivation activity in yeast and plant 
cells
The BD vector was constructed to test whether LlC3H18 
has transactivation activity in yeast. It was observed that 
yeast cells containing LlC3H18 grew well on the –WH 
plates and catalyzed the degradation of β-galactosidase 
(Fig.  3A), indicating that LlC3H18 showed transactiva-
tion activity in yeast. At the same time, pEAQ-BD and 
GAL4-LUC reporter vectors were constructed, and 
the transcriptional activity of LlC3H18 was transiently 
detected in tobacco leaves (Fig. 3B, C). The BD-LlC3H18 
expression in tobacco leaves exhibited a stronger LUC 
signal compared with the expression of GAL4-BD only 
(Fig.  3D). This result suggested that LlC3H18 also had 
transactivation activity in tobacco cells.

Overexpression of LlC3H18 causes growth defects 
in transgenic plants
For exploring the function of LlC3H18 in vivo, LlC3H18 
driven by 35S promoter was stably transformed into 
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Arabidopsis plants, and three overexpression lines 
were obtained by RT-PCR and selected for later func-
tional analysis (Fig.  4A). The 5-day-old seedlings were 
transferred to MS medium to observe their growth 
(Fig.  4B). Obviously, compared to the wild-type plants, 
the overexpression plants grew more slowly, had smaller 
rosette leaves (Fig. 4B, C). The 7-day-old seedlings were 

transferred to the culture substrate for observing their 
growth (Fig.  4D). Likewise, the overexpression plants 
still exhibited growth defects, with smaller rosette leaves 
(Fig. 4D, E). In addition, we also observed that the over-
expression plants showed a pronounced phenotype 
of delayed flowering, which required longer growth 
time and more rosette leaves to flowering (Fig.  4F-H). 

Fig. 1  LlC3H18 is a heat-inducible CCCH-type protein. A Phylogenetic tree analysis of LlC3H18 and its homologs from other plant species. The 
evolutionary tree was assembled in MEGA 7.0 via the neighbor-joining method (bootstrap replicates, n = 1,000). PdC3H18 (Phoenix dactylifera, 
XP_008800632.1); EgC3H18 (Elaeis guineensis, XP_010907182.1); DcC3H18 (Dioscorea cayenensis, XP_039146376.1); CnC3H18 (Cocos nucifera, 
KAG1342178.1); NnC3H18 (Nelumbo nucifera, XP_010270169.1); MaC3H18 (Musa acuminata, XP_009394377.1); ZjC3H18 (Ziziphus jujuba, 
XP_048327362.1); CsC3H18 (Camellia sinensis, XP_028094358.1); AtC3H18 (Arabidopsis thaliana, AT2G05160); PtC3H18 (Populus trichocarpa, 
XP_024441083.1); PmC3H18 (Prunus mume, XP_008229903.1); BnC3H18 (Brassica napus, XP_048619457.1). B The expression of LlC3H18 in lily leaves 
under heat stress conditions for different time durations. HS, heat stress, 37°C. Bars indicate the mean ± SD from three replicates (Student’s t-test, * 
P < 0.05, all treatments compared with 0 h). C The LUC reporter assay of LlC3H18 promoter activity in tobacco leaves at room temperature (RT, 22°C) 
and under HS (37°C, 3 h). One representative image based on three independent experiments. Scale bar = 1 cm. D Quantification of LUC intensity 
in panel C. All values shown are the mean ± SD of three replicates (Student’s t-test, * P < 0.05). E The activity of LlC3H18 promoter in proLlC3H18-GUS 
transgenic Arabidopsis at RT (22°C) and under HS (37°C, 3 h). One representative image based on three replicates. F The single plant 
of proLlC3H18-GUS transgenic Arabidopsis in (E). Scale bar = 1 cm. G LlC3H18 promoter activity in proLlC3H18-GUS that was transiently expressed lily 
petal discs at RT (22°C) and under HS (37°C, 3 h). One representative image based on three independent experiments. Scale bar = 1 cm
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Therefore, these results suggested that constitutive over-
expression of LlC3H18 might impair normal growth and 
development, resulting in growth defects.

Overexpression of LlC3H18 damages thermotolerance 
of transgenic plants
The seedlings of wild-type and overexpressing Arabidop-
sis plants were treated with HS to detect their thermotol-
erance (Fig. 5A). The results showed that overexpression 
of LlC3H18 reduced the survival rate of transgenic seed-
lings after HS (Fig.  5B), indicating that LlC3H18 accu-
mulation decreased their thermotolerance. Then we 
detected the expression of some heat-related genes in 
transgenic lines. It was revealed that overexpression 
of LlC3H18 activated the expression of heat-related 
genes, AtHSFA2, AtDREB2A, AtWRKY33, AtHSP22.0, 
AtHSP25.3, and AtGolS1 under normal conditions, 
but some of their expression (AtHSFA2, AtDREB2A, 
AtHSP22.0, AtHSP25.3, and AtGolS1) were decreased 
in one or two transgenic lines compared to the wild-
type after HS treatment (Fig. S4), which suggested that 
LlC3H18 overexpression might inhibit their expression 

under high temperature conditions, thereby causing 
reduced thermotolerance. At the same time, LlC3H18 
was also overexpressed in petal discs using the tran-
sient-expression system of lily (Fig. 5C). Followed by HS 
treatment, it was observed that LlC3H18 overexpression 
accelerated the process of petal fading, and the fading of 
LlC3H18-overexpressed discs was stronger (Fig.  5D). In 
addition, under normal conditions, LlC3H18 overexpres-
sion did not affect the relative ion leakage of petal discs, 
but after HS, the relative ion leakage of the overexpressed 
discs was higher than that of the controls (Fig. 5E). These 
results suggested that overexpression of LlC3H18 limited 
the ability of lily cells to resist the damages of HS, and 
decreased the thermotolerance.

Silencing of LlC3H18 reduces thermotolerance in lily
The LlC3H18 was silenced in lily petals by virus-induced 
gene silencing (VIGS), followed by thermotolerance 
assays (Fig.  5F). The results showed that silencing of 
LlC3H18 promoted the fading of petals under HS con-
ditions, suggesting that the damage caused by high tem-
perature was aggravated in LlC3H18-silenced petal 

Fig. 2  Subcellular localization assay of LlC3H18. A Detection of fluorescence signals in tobacco leaf cells co-transfected with GFP-LlC3H18, 
the nuclear marker RFP-NLS, the PB marker RFP-AtDCP2, the SG marker RFP-AtPABP8 at room temperature (RT, 22°C) and under HS (37°C, 3 h). Scale 
bar = 50 µm. B Detection of fluorescence signals in tobacco leaf cells co-transfected with GFP-LlC3H18, and the nuclear marker RFP-NLS at room 
temperature (RT, 22°C), under HS (37°C, 3 h), and after recovery 1 h from HS (HS + R, 22°C). Scale bar = 50 µm. C RNA-EMSA assay of GST- LlC3H18 
protein and ARE sequence. One representative image based on three independent experiments. D GFP-ARE or GFP-MutG co-transformed 
with LlC3H18. GFP-MuG (replace the A residue in ARE with G) as a negative control. RT, room temperature, 22°C; HS, heat stress, 37°C, 3 h. Scale 
bar = 50 µm. E The GFP intensity in (D) is measured. Data are presented as the mean ± SD of three replicates, with different letters indicating 
statistically significant difference (Student–Newman–Keuls test, P < 0.05)
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discs (Fig. 5G). Simultaneously, it was also observed that 
LlC3H18 silencing did not affect the value of relative ion 
leakage of petal discs under normal conditions, but under 
HS, compared with the controls, the LlC3H18-silenced 
petal discs had a higher relative ion leakage (Fig.  5H), 
indicating that silencing of LlC3H18 impaired the resist-
ance of lily cells to high temperature and reduced their 

thermotolerance. On the other hand, the atc3h18 
homozygous Arabidopsis mutant (SALK_128806) was 
identified using PCR assays, and its thermotolerance was 
detected (Fig. S5). After HS, more mutant than wild-
type seedlings died with a lower survive rate, which indi-
cated atc3h18 mutant was more susceptible to HS (Fig. 
S5). Then, the expression of some heat-related genes was 

Fig. 3  Transactivation assay of LlC3H18. A Transactivation activity assay in the yeast AH109 strain. The transformants were screened on SD-W 
medium (lacking Trp) while the growth of transformants was detected on SD-WH medium (lacking Trp/His) containing 3-amino-1,2,4-triazole (3-AT). 
The color reaction associated with x-α-gal degradation was used as a readout for β-galactosidase activity in the transformants. Representative 
image based on three replicates. B The constructs for the LUC reporter assay. C Detection of the LUC signal in infiltrated tobacco leaves. The image 
is representative of three independent experiments. Scale bar = 1 cm. D Measurement of LUC intensity in the reporter assay (Student’s t-test, * 
P < 0.05)
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quantified in atc3h18. Under normal conditions, atc3h18 
deficit did not affect the expression of the detected heat-
related genes, but their expression was decreased in 
atc3h18 compared to the wild-type after HS (Fig. S6). 
These results suggested that the appropriate expression 
of C3H18 was crucial for establishing thermotolerance in 
Arabidopsis and lily.

LlC3H18 binds to the promoter of LlWRKY33 and activates 
its expression
Previous reports have demonstrated that WRKY33 plays 
an important role in the establishment of thermotoler-
ance and resistance to Botrytis cinerea, and it is involved 
in the regulation of pathogenic response pathways as a 
target factor of multiple CCCH proteins, such as C3H14 
(Birkenbihl et  al. 2012; Li et  al. 2011; Wang et  al. 2020; 
Zheng et  al. 2006). We first detected the expression of 
AtWRKY33 in LlC3H18-overexpressing Arabidopsis 
plants, and it was found that the transgenic lines had a 
higher AtWRKY33 expression than that of wild-type 
plants (Fig. S4). In addition, it was found that the expres-
sion of LlWRKY33 in the LlC3H18-overexpressing 

petal discs was activated compared with the control 
discs (Fig.  5C, 6A); however, in the LlC3H18-silencing 
petal discs, the expression of LlWRKY33 was evidently 
inhibited (Fig.  5F, 6B). Therefore, we speculated that 
LlWRKY33 may act as a downstream target of LlC3H18. 
Through a Y1H assay, it was observed that LlC3H18 
directly bound to the promoter of LlWRKY33 (33-P0) 
(Fig.  6C, D). Then, the LlWRKY33 promoter was trun-
cated into two fragments (33-P1 and 33-P2). The results 
of Y1H assay showed that LlC3H18 bound to the frag-
ment 33-P2, but not the fragment 33-P1 (Fig.  6C, D). 
The fragment 33-P2 was further truncated into the frag-
ment 33-P3, and LlC3H18 was found to bind the frag-
ment 33-P3 (Fig. 6C, D). The core element of the 33-P3 
fragment was mutated to form 33-P3m, and LlC3H18 
could not bind to 33-P3m (Fig.  6C, D). The result of 
EMSA indicated that LlC3H18 could bind to the core 
element of 33-P3 in  vitro (Fig.  6E; Table S1), suggest-
ing that LlC3H18 was able to bind DNA element and 
directly bound to the promoter of LlWRKY33. The fur-
ther dual-luciferase reporter assay showed that LlC3H18 
activated the promoter activity of LlWRKY33 (Fig. 6F-H). 

Fig. 4  Overexpression of LlC3H18 causes growth defectives. A Detection of LlC3H18-overexpression lines by RT-PCR. The 5-day-old seedlings were 
used to detect the expression of LlC3H18 in transgenic Arabidopsis lines. PCR of the endogenous control and test gene was performed with 28 
and 30 cycles, respectively. AtActin2 was used as an endogenous control. B Seedlings of wild-type and transgenic lines grown on MS medium for 3 
weeks. Scale bar = 1 cm. C Rosette radii of the plants which grown on MS medium for 3 weeks were counted. Bars are means ± SD of the tested 
plants (n = 9). D The 10-days-old seedlings were transferred from agar plates to soil for two weeks. The representative picture based on three 
replicates. Scale bar = 1 cm. E Rosette radii of the plants which grown on the soil for two weeks were counted. Bars are means ± SD of the tested 
plants (n = 9). F The 10-days-old seedlings were transferred from agar plates to soil for three weeks. Scale bar = 1 cm. The representative picture 
based on three replicates. G Bolting time for wild-type and transgenic lines. Bars are means ± SD of three independent experiments (n = 9, Student’s 
t-test, *P < 0.05). H The number of rosettes of the bolting transgenic and wild-type plants. Bars are means ± SD of three independent experiments 
(n = 9, Student’s t-test, *P < 0.05)
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Therefore, these data suggested that LlC3H18 bound to 
the promoter of LlWRKY33 and activate its expression. 
The role of LlWRKY33 was also detected by the transient 
overexpression system of lily petal discs (Fig.  6I). Same 
to the controls, overexpression of LlWRKY33 did not 
affect the color and relative ion leakage of petals under 
normal conditions, but after HS, LlWRKY33 overexpres-
sion reduced the fading of petal discs, and the relative 

ion leakage of them was also lower than the controls 
(Fig. 6J, K). These results showed that overexpression of 
LlWRKY33 in lily improved the resistance of cells to HS.

LlMYB305 binds to the promoter of LlC3H18 and activates 
its expression
The study of poplar has reported that PdC3H18 can 
participate in the formation of secondary cell walls as 

Fig. 5  Thermotolerance analysis of LlC3H18-overexpressed and -silenced petal discs, and LlC3H18-overexpressed Arabidopsis plants. A The 
5-d-old seedlings were directly exposed to 45℃ conditions for 1 h to detect their thermotolerance ability; the figure is a photo image taken after 7 
days of recovery at 22℃. B The survival rate, measured after 7 days of heat stress (HS). Bars are the mean ± SD of three independent experiments 
(Student’s t-test, *P < 0.05). C Detection of LlC3H18 expression in the LlC3H18-overexpressed petal discs. Data are presented as the mean ± SD 
of three replicates (Student’s t-test, * P < 0.05). D Phenotypes of lily petal discs under room temperature conditions (RT, 22 °C) and after exposure 
to heat stress (HS, 40 °C, 12 h). Representative image came from three experiments. Scale bar = 1 cm. E Relative ion leakage (%) of discs at 22 °C 
(RT) and after HS (40 °C, 12 h). Data are presented as the mean ± SD of three replicates (Student’s t-test, * P < 0.05; ND, no significant difference; 
the SK-LlC3H18 was compared with the SK-II control under the RT or HS condition, respectively. F Expression of LlC3H18 in TRV-VIGS lily petals. 
Data are presented as the means ± SD of three replicates (Student’s t-test, * P < 0.05). G Phenotypes of lily petal discs at RT (22 °C) and after HS 
(40 °C, 12 h). Representative image based on three experiments. Scale bar = 1 cm. (H) Relative ion leakage (%) of discs at RT and after HS (40 °C, 
12 h). Data are presented as the mean ± SD of three replicates (Student’s t-test, *P < 0.05; ND No significant difference, TRV-LlC3H18 was compared 
with the TRV-control under the RT or HS condition, respectively)
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a downstream factor of PdMYB21 (Chai et  al. 2014). 
Our previous study has shown that lily LlMYB305 is a 
MYB21 homology whose expression is activated by high 
temperature and plays a positive role in thermotoler-
ance (Wu et al. 2021). In addition, MYB21 and C3H18 
have been reported to participate in the same pro-
cess of anther development (Cheng et  al. 2009; Huang 
et al. 2020; Song et al. 2011; Xu et al. 2022). According 
to these results, we guessed that LlMYB305 might act 
as an upstream regulator of LlC3H18. Through a Y1H 
assay, it was revealed that LlMYB305 directly bound 
to the LlC3H18 promoter (18-P0), and the truncation 
analysis of LlC3H18 promoter showed that LlMYB305 
bound to the fragments 18-P2 and 18-P3, but not to 
18-P1 (Fig.  7A, B). Analysis of the 18-P2 and 18-P3 
sequences showed that both them contained a con-
served MYB-responsive element (MRE) (Fig.  7A). The 
fragments 18-P2 and 18-P3 were then truncated into 
18-P4 and 18-P5, respectively. The result of Y1H assay 
reveled that LlMYB305 bound to them, but not to the 
mutant fragments 18-mP4 and 18-mP5 (Fig.  7A, B). 
The EMSA assay also indicated that LlMYB305 could 
bind to the MREs from the fragment 18-P4 (probe 1) 
and 18-P5 (probe 2) (Fig. 7C, D; Table S1). The further 
dual luciferase assay showed that LlMYB305 could 
activate the promoter activity of LlC3H18 (Fig.  7E-G), 
suggesting that LlMYB305 might directly activate its 
expression. Besides, with transient overexpression of 
LlMYB305 in lily petals, we found that the expression 
of LlC3H18 and LlWRKY33 in the LlMYB305-overex-
pressing petal discs was increased compared with the 
controls (Fig. 7H-J). However, silencing of LlMYB305 in 
lily petals caused the decreased expression of LlC3H18 
and LlWRKY33 (Fig.  7K-M). Compared with the con-
trol petal discs, discs overexpressing LlMYB305 showed 
slower petal fading and lower relative ion leakage after 
high-temperature treatment (Fig. 7N, O), while silenc-
ing of LlMYB305 showed opposite effects (Fig.  7P, 

Q), indicating that LlMYB305 positively regulates 
thermotolerance.

Discussion
Plant CCCH proteins form a large family of regula-
tory proteins function in many aspects of plant growth, 
development, and environmental responses (Bogamuwa 
and Jang 2014; Han et al. 2021). In plants, the TZF pro-
teins with two zinc-finger motifs usually account for the 
majority, and more studies of them have be performed, 
while there are few reports on non-TZF proteins. In this 
study, we identified a high-temperature differentially 
expressed non-TZF gene LlC3H18 that plays a required 
role in thermotolerance (Fig. 1).

Similar to the protein structure of Arabidop-
sis AtC3H18 (Xu et  al. 2022), LlC3H18 has a CCCH 
domain and two potential RBDs (Fig. S3). Under nor-
mal conditions or at the recovery period after HS, 
LlC3H18 distributed in the cytoplasm and nucleus, but 
under HS, LlC3H18 was localized in cytoplasmic foci, 
and co-localized with the PB and SB markers (Fig. 2A, 
B), suggesting that it might bind RNA and participate 
in assembly process of mRNP granules. Although most 
CCCH genes diverse in expression patterns and func-
tions, all Arabidopsis RR-TZFs and another two TZFs 
(AtC3H14 and AtC3H15), and rice OsTZF1 can local-
ize to cytoplasmic foci (Chai et al. 2015; Jan et al. 2013; 
Pomeranz et  al. 2010a). Two non-TNF proteins of 
Arabidopsis, AtC3H18L and AtC3H18 can also locate 
in cytoplasmic foci after HS (Xu et al. 2020a; Xu et al. 
2022). In Arabidopsis, multiple TZFs are localized in 
both the nucleus and cytoplasm foci, where they can 
function as both RNA-binding proteins and TFs, such 
as AtTZF1, AtC3H14, and AtC3H15 (Addepalli and 
Hunt 2008; Kim et  al. 2014; Pomeranz et  al. 2010b; 
Qu et  al. 2014; Wang et  al. 2020). There is a differ-
ence here, the localization of cytoplasmic foci of many 
TZFs is stable, while the localization of cytoplasmic 

(See figure on next page.)
Fig. 6  LlC3H18 binds the promoter of LlWRKY33 and activates its expression. A Detection of the expression level of LlWRKY33 
in LlC3H18-overexpressed lily petals. Data are presented as the mean ± SD of three replicates (Student’s t-test, * P < 0.05). B Detection 
of the expression level of LlWRKY33 in LlC3H18-silencing lily petals. Data are presented as the mean ± SD of three replicates (Student’s 
t-test, * P < 0.05). C Diagram of the LlWRKY33 promoter. The W-box elements are marked with blue triangles. The truncated fragments used 
for the yeast one-hybrid (Y1H) assay are marked with black lines. The mutant fragment used for the Y1H assay is marked with a red line. D A 
Y1H assay for LlC3H18 and the promoter of LlWRKY33. Fragment activity was analyzed by a color change on Ura-/Trp-deficient SD medium 
following the addition of x-gal. One representative image based on three replicates. E An electrophoretic mobility shift assay (EMSA) 
of GST-LlC3H18 and the potential elements from the LlWRKY33 promoter. One representative image based on three replicates. F Constructs 
used in the dual-luciferase reporter assay. G Detection of the LUC signal in tobacco leaves. One representative image based on three replicates. 
Scale bar = 1 cm. H Measurement of LUC intensity in the dual-luciferase reporter assay. Data are presented as means ± SD of three replicates 
(Student’s t-test, * P < 0.05). (I) Detection of LlWRKY33 expression in the LlWRKY33-overexpressed petal discs. Data are presented as the mean ± SD 
of three replicates (Student’s t-test, * P < 0.05). (J) Phenotypes of lily petal discs under room temperature conditions (RT, 22 °C) and after exposure 
to heat stress (HS, 40 °C, 12 h). Representative image came from three experiments. Scale bar = 1 cm. (K) Relative ion leakage (%) of discs at 22 °C 
(RT) and after HS (40 °C, 12 h). Data are presented as the mean ± SD of three replicates (Student’s t-test, * P < 0.05; ND, no significant difference; 
the SK-LlWRKY33 was compared with the SK-II control under the RT or HS condition, respectively
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foci of LlC3H18 was induced by high temperature 
(Fig.  2A), and after the release of HS, LlC3H18 repo-
sitioned in the cytoplasm and nucleus. Many TZF 
proteins, such as AtTZF1 and AtC3H14 of Arabidop-
sis, SlC3H39 of tomato, and OsC3H12 of rice, act as 

RNA-binding proteins, which can bind the conserved 
ARE at the 3’-UTR of mRNA to regulate their stability 
and translation efficiency (Deng et  al. 2012; Kim et  al. 
2014; Pomeranz et  al. 2010b; Qu et  al. 2014; Xu et  al. 
2023), but whether non-TZF proteins bind to RNA is 

Fig. 6  (See legend on previous page.)
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Fig. 7  LlMYB305 binds the promoter of LlC3H18 and activates its expression. (A) Diagram of the LlC3H18 promoter. The W-box elements are 
marked with blue triangles. The truncated fragments used for the yeast one-hybrid (Y1H) assay are marked with black lines. The mutant fragment 
used for the Y1H assay is marked with a red line. (B) A Y1H assay for LlMYB305 and the promoter of LlC3H18. Fragment activity was analyzed 
by a color change on Ura-/Trp-deficient SD medium following the addition of x-gal. One representative image based on three replicates. (C 
and D) An electrophoretic mobility shift assay (EMSA) of GST-LlMYB305 and the potential elements from the LlC3H18 promoter. The probe 1 
and 2 came from the core sequence of P4 and P5 fragments, respectively. One representative image based on three replicates. (E) Constructs 
used in the dual-luciferase reporter assay. (F) Detection of the LUC signal in tobacco leaves. One representative image based on three replicates. 
Scale bar = 1 cm. (G) Measurement of LUC intensity in the dual-luciferase reporter assay. Data are presented as means ± SD of three replicates 
(Student’s t-test, * P < 0.05). (H-J) Detection of the expression level of LlMYB305 (H), LlC3H18 (I), and LlWRKY33 (J) in LlMYB305-overexpressed lily 
petals. Data are presented as the mean ± SD of three replicates (Student’s t-test, * P < 0.05). (K-M) Detection of the expression level of LlMYB305 
(K), LlC3H18 (L), and LlWRKY33 (M) in LlMYB305-silencing lily petals. Data are presented as the mean ± SD of three replicates (Student’s t-test, * 
P < 0.05). (N) Phenotypes of lily petal discs under room temperature conditions (RT, 22 °C) and after exposure to heat stress (HS, 40 °C, 12 h). 
Representative image came from three experiments. Scale bar = 1 cm. (O) Relative ion leakage (%) of discs at 22 °C (RT) and after HS (40 °C, 
12 h). Data are presented as the mean ± SD of three replicates (Student’s t-test, * P < 0.05; ND, no significant difference; the SK-LlMYB305 
was compared with the SK-II control under the RT or HS condition, respectively. (P) Phenotypes of lily petal discs at RT (22 °C) and after HS (40 °C, 
12 h). Representative image based on three experiments. Scale bar = 1 cm. (Q) Relative ion leakage (%) of discs at RT and after HS (40 °C, 12 h). 
Data are presented as the mean ± SD of three replicates (Student’s t-test, *P < 0.05; ND, no significant difference; TRV-LlMYB305 was compared 
with the TRV-control under the RT or HS condition, respectively)
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still unknown. In this study, we found that LlC3H18, as 
a non-TZF protein, can also bind to the typical ARE to 
affect the stability of mRNA (Fig. 2).

Under normal conditions or at the recovery period 
after HS, it was observed that part of LlC3H18 was 
located into the nucleus (Fig. 2A), implying that it might 
also function as a TF. In addition, LlC3H18 showed 
transactivation activity in both yeast and tobacco cells 
(Fig. 3), indicating that it may be able to directly activate 
the expression of target genes. AtC3H14 and AtC3H15 
are mainly localized to cytoplasm foci, and a small part 
is localized in the nucleus, but they show transactiva-
tion activity and activate target genes (Chai et al. 2015). 
AtWRKY33 has been reported to be involved in the 
regulation of plant pathogen defense, and salt, flood-
ing, and heat tolerances, which is a central regulator of 
these physiological processes (Jiang and Deyholos 2008; 
Krishnamurthy et al. 2020; Li et al. 2011; Liu et al. 2021; 
Liu et  al. 2015; Zheng et  al. 2006). AtC3H14 shows an 
ability to bind DNA element and acts as a direct regulator 
of AtWRKY33 to activate its expression and participate in 
the establishment of resistance to B. cinerea (Wang et al. 
2020). Similarly, we found that LlC3H18 bound to the 
DNA element from LlWRKY33 promoter and activated 
its expression (Fig.  6). Overexpression of LlC3H18 acti-
vated the expression of WRKY33 in lily and Arabidopsis, 
and silencing of LlC3H18 decreased the expression of 
LlWRKY33 (Fig. 6). These results suggested that LlC3H18 
might act as a direct activator of LlWRKY33.

At room temperature, AtC3H18 could form mRNP 
granules in pollens and localize to cytoplasmic foci, but 
no similar phenomenon was observed in tobacco cells. 
However, under HS conditions, AtC3H18 can form 
mRNP granules in tobacco cells and localize to cyto-
plasmic foci, indicating the critical concentration of 
AtC3H18 forming mRNP granules in pollens is lower 
than that in tobacco cells (Xu et al. 2022). The localiza-
tion of LlC3H18 also had a similar phenomenon; the 
localization of cytoplasmic foci of LlC3H18 was enabled 
by high temperature (Fig.  2A). In Chinese cabbage, the 
C3H18 homologous genes BcMF30a and BcMF30c play 
an indispensable role in pollen fertility; overexpression 
or mutation of them leads to abnormal pollen develop-
ment, indicating that proper expression of BcMF30a 
and BcMF30c is extremely important for normal pollen 
development (Xu et  al. 2020b; Xu et  al. 2020c). Simi-
larly, AtC3H18-overexpressed Arabidopsis lines also 
show pollen abortion, which may be caused by affect-
ing the assembly of mRNP granules (Xu et  al. 2022). 
Our study found that overexpression of LlC3H18 in lily 
and Arabidopsis would lead to the reduction of thermo-
tolerance (Fig.  5). In LlC3H18-overexpressing plants, it 
was found that the expression of heat-responsive genes 

was activated at room temperature, indicating that 
LlC3H18 could act as a TF and activate HS response in 
the absence of high temperature; however, under HS, the 
induced expression of heat-responsive genes decreased, 
which might lead to a final decrease in thermotolerance 
(Fig. S4). We speculated that the excessive expression 
of LlC3H18 resulted in the accumulation of LlC3H18 
protein, which might destroy the normal assembly pro-
cess of mRNP granules under HS conditions for leading 
to the damage of HS response and reducing the expres-
sion of heat-protective genes; the specific mechanism 
need to be clarified in the future. Interesting, silencing 
of LlC3H18 in lily also led to the decrease of its ther-
motolerance (Fig.  5). Similarly, the atc3h18 Arabidopsis 
mutant showed decreased thermotolerance as well. We 
found that the heat-induced expression of heat-respon-
sive genes was reduced in atc3h18 mutant (Fig. S6). After 
HS release, C3H18 was released from cytoplasmic foci 
and entered the nucleus to play a role as a trans-activator. 
The decrease or deletion of C3H18 expression may dis-
rupt the role of trans-activator of C3H18, which is detri-
mental to the maintenance of HS response. These results 
indicated that the appropriate expression of C3H18 was 
crucial for establishing thermotolerance.

Meanwhile, many studies have also found that trans-
genic plants with overexpression of TZFs often show 
growth defects. For instance, the overexpression trans-
genic plants of AtTZF1, 4, 5, and 6 all exhibited compact 
and crinkled leaves, and some of homozygous overex-
pression plants of AtTZF1 even showed lethal phenotype 
(Bogamuwa and Jang 2013; Lin et al. 2011). Overexpres-
sion of AtC3H14 and AtC3H15 led to dwarfing phe-
notypes and male sterility in Arabidopsis, respectively 
(Kim et al. 2014; Shi et al. 2015). We found that overex-
pression of LlC3H18 also caused the growth defects of 
transgenic Arabidopsis plants (Fig.  4), which was very 
different with the growth phenotype of AtC3H18-overex-
pression, which did not cause any growth defects under 
normal conditions (Xu et al. 2022). It was speculated that 
LlC3H18 also showed nucleus-localization under nor-
mal conditions, which may activate some target genes to 
damage the growth of transgenic plants.

Arabidopsis AtC3H18 is highly expressed in anthers, 
and the R2R3-MYB TFs AtMYB21 and AtMYB24 func-
tion key roles in anther development and thermotoler-
ance (Cheng et al. 2009; Huang et al. 2017, 2020; Kumar 
and Chattopadhyay 2018; Mandaokar and Browse 2009; 
Song et  al. 2011; Xu et  al. 2022). Lily LlMYB305 is a 
MYB21/24 homology, and our previous study demon-
strated that LlMYB305 is induced by high temperature 
(Wu et  al. 2021). In this study, we demonstrated that 
LlMYB305 directly bound to the promoter of LlC3H18 
and activated its expression (Fig. 7). At the same time, 
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we found that overexpression of LlMYB305 improved 
the thermotolerance of lily, silencing of LlMYB305 
reduced its thermotolerance (Fig.  7); and LlMYB305 
could activate the expression of LlC3H18, which did 
not damage thermotolerance as overexpression of 
LlC3H18 (Fig. 5). It was speculated that LlMYB305, as 
an upstream regulatory factor, could coordinate the 
role of LlC3H18 by simultaneously activating other 
factors, thereby ensuring that LlC3H18 played a role 
within an appropriate range. In poplar, PdMYB3 and 
PdMYB21 regulate the specific expression of PdC3H17 
and PdC3H18 to participate in the formation of sec-
ondary cell walls (Chai et  al. 2014), suggesting that 
MYB TFs and CCCH-type proteins may link with a 
conserved regulatory mechanism.

In conclusion, our study showed that LlC3H18 was a 
heat-inducible CCCH-type protein, and LlMYB305 could 
act as its upstream factor to activate its expression and 
participate in the establishment of thermotolerance; with-
out HS, LlC3H18 could localize in the nucleus and acted as 
a trans-activator to stimulate the expression of LlWRKY33; 
in addition, under HS conditions, LlC3H18 could also play 
a role of RNA-binding protein, form mRNP granules to 
participate in the regulation of thermotolerance (Fig.  8). 
Based on these results, we speculate that there may be 
a LlMYB305-LlC3H18-LlWRKY33 regulatory module 
involved in the establishment of thermotolerance in lily.

Methods
Plant materials and growth conditions
The Lilium Oriental hybrid ‘Sorbonne’ and L. longiflorum 
‘White heaven’ were used as the experimental materi-
als in this study. The ‘Sorbonne’ was planted in soil and 
grown in a greenhouse with day/night temperatures 
of 22/16  °C. Sterile tissue-cultured plantlets of ‘White 
heaven’ were cultured in a standard culture room at 22 °C 
with a light–dark cycle of 16 h/8 h. Arabidopsis thaliana 
Col-0 and Nicotiana benthamiana (tobacco) seeds were 
sown in MS medium, and 10 days after germination, the 
seedlings were transplanted into nursery pots and grown 
in a standard greenhouse (22/16 °C) with 16-h/8-h light/
dark photoperiod.

Isolation of LlC3H18 gene, LlC3H18 and LlWRKY33 
promoters from ‘White heaven’
Two-week-old lily plants were treated with HS at 37  °C 
for 1  h, the leaves were collected, and total RNA was 
extracted using RNAprep Pure Kit (Tiangen, China), fol-
lowed by M-MLV reverse transcriptase (Vazyme, China) 
and Oligo dT primer to synthesize cDNA. According 
to the transcriptome data, the specific primers were 
designed to amplify the open reading frame (ORF) of 
LlC3H18 (Table S2). The promoters of LlC3H18 and 
LlWRKY33 were isolated and cloned with the method 
of Hi-tail PCR (Liu and Chen 2007) from lily ‘White 

Fig. 8  A simple working model of the LlC3H18-mediated regulatory mechanism in lily in response to heat stress. A Under HS conditions, LlC3H18 
is a heat-inducible CCCH gene, which can be directly activated by LlMYB305; LlC3H18 locates in the cytoplasm foci and acts as RNA binding protein 
to form mRNP granules, thus balancing the thermotolerance. B At the recovery period without HS, LlC3H18 can be transformed from cytoplasm foci 
to localize in the nucleus, which promotes it to act as a trans-activator, directly activating the expression of LlWRKY33, thus forming a heat-inducible 
LlMYB305-LlC3H18-LlWRKY33 regulatory module, and sustaining the heat stress response. The gray arrow indicates a closed state, while the yellow 
arrow indicates a working state. HS Heat stress, PB Processing body, SG Stress granule



Page 14 of 17Wu et al. Molecular Horticulture            (2023) 3:15 

heaven’; the 1184-bp upstream fragment from ATG of 
LlC3H18, and the 521-bp upstream fragment from ATG 
of LlWRKY33 were isolated and identified, respectively.

Phylogenetic tree analysis and prediction of conserved 
protein domains
Phylogenetic tree analysis of LlC3H18 and its homolo-
gous proteins was performed by MEGA 7.0 software 
using the neighbor-joining method (n = 1000). Multiple 
alignment analysis of C3H18 amino acid sequences from 
different species was performed using ClustalW 2.0 and 
BioEdit 7.0 softwares.

Promoter activity analysis of LlC3H18
The LlC3H18 promoter was cloned into pGreenII0800-
LUC (Hellens et  al. 2005) and pCAMBIA1391-GUS 
(Abcam, USA). The reconstructed pGreenII0800-LUC-
proLlC3H18 was introduced into Agrobacterium tumefa-
ciens strain GV3101 (psoup). A mixed bacterial solution 
was infiltrated into tobacco leaves for the activity assay. 
After 48  h, the infiltrated leaves were treated with HS 
at 37  °C for 3  h, then they were removed to detect the 
LUC signal. The reconstructed pCAMBIA1391-GUS-
proLlC3H18 was introduced into A. tumefaciens strain 
GV3101. The GUS-reporter gene was stably transformed 
into Arabidopsis and transiently transformed into lily 
petal discs. The transgenic Arabidopsis seedlings and the 
lily petal discs were treated with HS at 37 °C for 3 h, and 
then, they were sampled for GUS assay. All primers used 
for plasmid construct are listed in the Table S3.

The transcriptional activity assay of LlC3H18
The ORF of LlC3H18 was cloned into pGBKT7 (BD; 
Clontech, Japan) to generate BD-LlC3H18 protein. The 
plasmid-transformed yeast AH109 cell was used for tran-
scriptional activity analysis; yeast containing GAL4 and 
BD were used as positive and negative controls, respec-
tively. After 3 days of culture at 30 °C, the positive clones 
were selected and transferred to -Trp-His-deficient SD 
medium for identification of transcriptional activity. 
The ORF of LlC3H18 was cloned into the vector pEAQ 
(Sainsbury et  al. 2009) to generate a BD fusion protein 
as effector. The 5 × GAL4 UAS element and the mini 35S 
promoter were fused and cloned into the vector pGree-
nII0800-LUC to construct the reporter vector. These 
reconstituted vectors were respectively introduced into 
A. tumefaciens GV3101 (psoup). The bacterial solution 
was resuspended, mixed according to the proportion, 
and then the tobacco leaves were injected. Under normal 
growth conditions, after culturing for 60 h, the injected 

leaves were cut to detect the LUC signal and the LUC 
intensity was also determined.

Subcellular localization analysis of LlC3H18
The ORF of LlC3H18 was cloned into pCAMBIA1300-
N-GFP (Abcam, USA) vector to generate GFP-LlC3H18 
fusion protein, and the reconstituted vector were intro-
duced into A. tumefaciens GV3101, respectively. The dif-
ferent constructs were expressed in tobacco leaves, the 
mCherry-DCP2, mCherry-PABP8, and RFP-NLS were 
used as the PB, SG, and nucleus marker, respectively, 
and fluorescence signals were checked under confocal 
microscopy (Zeiss, Jena, Germany).

Heat treatment and gene expression analysis of lily
The robust tissue-cultured ‘White heaven’ seedlings with 
the same size were selected for gene expression analysis. 
For HS, lily plantlets were incubated at 37 °C for different 
lengths of time (0, 0.5, 1, 3, 6, 12  h). After HS finished, 
the leaves were collected for extracting total RNA. The 
RNA reverse transcribed into cDNA with a HiScript II 
kit (Vazyme, China), and the expression of LlC3H18 were 
detected by real-time quantitative PCR (RT-qPCR) with 
the 2−ΔΔCT method (Livak and Schmittgen 2001; Schmitt-
gen and Livak 2008). Lily 18S rRNA was used as an inter-
nal reference gene (Table S4).

Yeast one‑hybrid assay
The test and mutant fragments of the promoters of 
LlC3H18 and LlWRKY33 were cloned into pLacZi 
(Clontech, Japan) vectors. The ORFs of LlMYB305 and 
LlC3H18 were inserted into a pJG (Clontech, Japan) vec-
tor, respectively. The corresponding vectors were co-
transformed into yeast EGY48. Successful transformants 
were selected by growing on -Trp-Ura deficit SD media 
for 3  days at 30℃. Binding was investigated using color 
analysis on SD media containing 80 mg L−1 x-gal.

Electrophoretic mobility shift assay (EMSA)
The ORFs of LlC3H18 and LlMYB305 were separately 
cloned into pGEX-4  T-1 (GE Healthcare, USA) to gen-
erate the GST fusion proteins. The fusion proteins were 
induced in E. coli BL21 by adding isopropyl-β-D-1-
thiogalactopyranoside (200  mM, IPTG); The recombi-
nant GST-LlC3H18 and GST-LlMYB305 proteins was 
purified by GST protein purification kit, and detected by 
SDS–polyacrylamide electrophoresis. The EMSA probe 
was synthesized with 5’ biotin-labeled. Binding reactions 
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were incubated at room temperature for 20  min and 
then separated using electrophoresis through a 6% (40:1 
acrylamide:bis-acrylamide) native gel at 4 °C. The EMSA 
analysis was performed using the Light Shift Chemilumi-
nescence EMSA Kit (ThermoFisher, New York, USA).

Dual‑luciferase reporter assay
The ORFs of LlC3H18 and LlMYB305 were cloned into 
pGreenII62-SK (SK-II) (Hellens et  al. 2005) to gener-
ate effector vectors, respectively. The LlC3H18 and 
LlWRKY33 promoters were cloned into pGreenII0800-
LUC to generate the reporter vectors. The empty vec-
tors were used as the negative control. The vectors were 
introduced into A. tumefaciens strain GV3101 (psoup). 
A mixed bacterial solution was infiltrated into tobacco 
leaves for the dual-luciferase reporter assay. After 48  h, 
the infiltrated leaves were removed, and the LUC signal 
was detected and measured.

ARE‑binding assay
For DNA constructs used in mRNA-binding assays, 
GFP-ARE was made by ligating the ARE (5’-TTA​TTT​
ATT​ATT​TAT​TTA​TTA​TTT​ATT​TAT​TAT​TTA​TTT​ATT​
A-3’) to the end of the GFP coding region, subcloning to 
pCAMBIA1300-GFP vector. GFP-MutG was generated 
following the same procedures except the ARE region 
was replaced by the MutG (5’-TTG​TTT​GTT​GTT​TGT​
TTG​TTG​TTT​GTT​TGT​TGT​TTG​TTT​GTT​A-3’). The 
LlC3H18 was generated by PCR and then transferring 
it in pGreenII62-SK (Hellens et  al. 2005) vector. These 
reconstituted vectors were introduced into A. tumefa-
ciens GV3101, respectively. The mixed bacterial solutions 
were suspended and injected in tobacco leaves. After 
48 h, the leaves were removed and the intensity of GFP 
fluorescence was observed.

Transient overexpression in lily petals
The bacterial solutions of pGreenII62-SK and pGreenII62-
SK-LlC3H18/LlWRKY33/LlMYB305 were collected by 
centrifugation and resuspended in the infiltration buffer 
(10 mM MgCl2, 200 mM acetosyringine, 10 mM MES, pH 
5.6) and placed in the dark at 22℃ for 5 h before vacuum 
infiltration. The 10-cm length of unopened ‘Sorbonne’ 
flower buds was selected, and the inner petals were used 
to obscure the 1-cm-diameter discs with a hole-puncher 
(Wu et al. 2022a; Wu et al. 2023; Wu et al. 2022b). Under 
the vacuum condition of -0.7  MPa, the bacterial solu-
tion was infiltrated into these petal discs. Then, the discs 
were washed with sterile water and placed on an agar 
plate (0.4%), and cultivated in the dark at 22 °C for 96 h. 
For HS treatment, the discs were treated at 40 °C for 12 h, 
then harvested immediately, and their relative ion leakage 
determined (Wu et al. 2023).

Virus‑induced gene silencing (VIGS) in lily petals
A 300-bp fragment of LlC3H18 or LlMYB305 was 
obtained by PCR amplification and cloned into pTRV2 
to generate the pTRV2-LlC3H18 and pTRV2-LlMYB305 
vector, respectively. Then, pTRV1, pTRV2, and pTRV2-
LlC3H18 or pTRV2-LlMYB305 were transformed into A. 
tumefaciens GV3101, respectively. The bacteria of TRV1 
and TRV2 were resuspended and mixed in proportion, 
and the petal discs were vacuumed as described above. 
After 5  days, the discs were treated with HS, then the 
discs were harvested to measure relative ion leakage.

Stable transformation of Arabidopsis
The LlC3H18 ORF was inserted into pCAMBIA1300, the 
LlC3H18 promoter was inserted into pCAMBIA1391, 
and then the reconstructed vectors were transformed 
into A. tumefaciens GV3101, respectively. For transfor-
mation, the floral-dip method was used with 5-week-
old Arabidopsis plants. Through resistance screening 
and RT-PCR identification, three transgenic lines were 
selected for subsequent experiments.

Thermotolerance test of transgenic plants
Arabidopsis seeds were sterilized and sown on MS 
medium, vernalized for 3  days at 4  °C in the dark, and 
then transferred to a standard culture room at 22 °C (16 h 
light/8 h dark). The 5-day-old Arabidopsis seedlings were 
treated with HS in a constant temperature incubator, and 
recovery at 22  °C for 7  days, and the survival rate was 
recorded. The 5-day-old wild-type and transgenic Arabi-
dopsis seedlings were collected for expression analysis of 
heat-responsive genes. Arabidopsis AtActin2 was used 
as internal reference gene for RT-qPCR analysis, and the 
relative levels of gene expression were calculated using 
the 2−ΔΔCT method (Livak and Schmittgen 2001; Schmitt-
gen and Livak 2008).
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