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Tomato (Solanum lycopersicum) is one of the world’s 
most extensively cultivated crops, and has been the sub-
ject of hundreds of years of breeding and selection. Nev-
ertheless, the genetic variability available for the breeding 
and improvement of tomato within the confines of the 
species is limited. This has been described as a “genetic 
bottleneck” (Miller and Tanksley 1990) and is due to the 
domestication history of the crop, particularly the trans-
fer of select germplasm from South America to Europe in 
the 1500 s, followed by selections and return to the New 
World, again of limited germplasm (Knapp and Peralta 
2016).

Reaching beyond the S. lycopersicum species as a 
source for genetic variability began nearly 100 years ago, 
with the introduction of Cladosporium resistance from 
S. pimpinellifolium in 1934. As might be expected, the 
wild species have contributed to breeding for resistances 
in the cultivated tomato. Surprisingly, and counterin-
tuitively, wild species can contribute to the breeding for 
improved quality of the fruit (e.g., Rick 1974; Schaffer 
et al. 1999; Tiemann et al. 2017; Zhao et al. 2019; Pereira 
et al. 2021) even though the wild species fruit are not of 

high quality and some of the more primitive wild species 
are inedible and poisonous.

The potential of wild species to contribute quality traits 
valuable to tomato improvement is great, but only par-
tially explored and utilized, even since the earlier reali-
zation of this potential (Rick 1974; Zamir 2001). Partial 
metabolomic characterizations of fruit of select wild spe-
cies and their respective introgression lines indicate the 
potential inherent in wild species germplasm for modi-
fying primary and secondary metabolite levels in tomato 
fruit.

The genetic variability for a particular trait can mainly 
be attributed to two main features of the gene determin-
ing the trait: the developmental expression levels of the 
particular gene, and its sequence polymorphism, which 
may lead to functionally significant sequence differences, 
either at the nucleotide or amino acid level. Whole tran-
script RNA-seq transcriptome analysis offers the advan-
tage of providing both expression and coding sequence 
polymorphism information, and both measures of 
genetic variability can be valuable in identifying potential 
wild species donors for selected genetic traits.

In this paper we report and make available to the 
research community an extensive data of gene transcript 
information (whole-transcript RNA-seq) from fruit of 
44 tomato accessions, comprising two studies. The first 
compares transcriptomes of four stages of fruit devel-
opment, from immature green to ripe, of 16 accessions. 
These include 4 lycopersicum, 2 pimpinellifolium, 2 chees-
maniae, 3 chmielewskii, 2 habrochaites, 2 peruvianum 
and a single pennellii accession (listed in Supplementary 
Table S1). The expression data for the developing fruit are 
presented in Supplementary Table S2. The second study 
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compares the transcriptomes of ripe fruit of 32 additional 
accessions (listed in Supplementary Table S1), compris-
ing 16 pimpinellifolium (8 of Ecuadorian origin and 8 
of Peruvian origin), 8 cheesmaniae and 8 galapagense. 
These data are presented in Supplementary Table S3. In 
total, ~ 1.5 billion reads were obtained from 129 libraries 
derived from 93 samples and mapped against the refer-
ence Heinz 1706 genome v4 (Supplementary Table S4).

Irrespective of species group, an initial perusal of the 
results can give a global overview of gene expression in 
Solanum fruit. Based on the expression results at each of 
the four developmental stages, approximately 24,000 of 
the ~ 34,000 annotated tomato genes are fruit-expressed 
(Fig.  1A). Around 10,000 tomato genes showed no 
detectable expression or had very low expression (< 10 
FPKM) in all the libraries. Most interestingly, expression 
of ~ 6,000 genes were limited to specific stages of devel-
opment, with the ripe fruit stage having the most stage-
specific expression. Of the 24,123 total fruit-expressed 
genes the vast majority are expressed in ripe fruit and 
only 1620 are not expressed in that stage, while 1274 
genes are expressed only in the ripe stage.

The data can be used to screen for natural genetic vari-
ation in both gene expression and gene sequences. Fig-
ure 1B,C illustrate the results of the two screens for the 
well-studied soluble vacuolar invertase gene, TIV, con-
trolling sucrose/hexose accumulation in the Solanum 
species. Earlier studies (e.g., Schaffer et  al. 1999 and 
references therein) have shown that genetic variation at 
the sucr locus, harboring TIV, is responsible for the high 
concentrations of sucrose in the green-fruited species. 
Our data are in confluence with these earlier studies that 
showed that TIV expression in green-fruited wild spe-
cies remains low during ripening, thereby allowing for 
sucrose accumulation in the fruit, whereas gene expres-
sion, and concomitant sucrose hydrolysis, is strongly 
upregulated in lycopersicum, leading to hexose accumula-
tion. The data uncovers additional genetic variability for 
upregulation, large in pimpinellifolium and galapagense, 
but only modest in cheesmaniae. In addition, sequence 
polymorphisms of the TIV alleles can similarly be 
retrieved (Fig. 1D).

In order to ascertain the significance of transcriptomic 
patterns to evolutionary and phylogenetic relationships, 
we compared the phylogenetic tree developed from anal-
ysis of transcriptome-derived sequence polymorphisms 
to the hierarchical tree based on gene expression pat-
terns. SNP calling detected ~ 2.4  M total SNPs, which 
were filtered to comprise ~ 946  K polymorphic sites 
identified with a minor allele frequency (MAF) of > 5% 
across at least 20 accessions (Supplementary file 1). The 
filtered SNPs were used for calculating distances between 

each accession to create a neighbor-joining (NJ) tree 
(Fig. 1F). In comparison, a hierarchical tree and heatmap 
(Fig. 1E) was generated based on the ripe fruit transcrip-
tomes, utilizing the expression patterns of the ~ 7000 
genes that showed at least a fourfold differential expres-
sion (adjusted p value < 0.001, Supplementary Table S5) 
between any of the five species groups. The five species 
groups comprise the accessions of lycopersicum, pimpi-
nellifolium, cheesmanaiae, galapagense, and the com-
bined accessions of the primitive green-fruited species, 
referred to as ‘green species’.

The strikingly similar results between the two 
approaches strongly indicate that the presumably unbi-
ased evolutionary relationships based on sequence poly-
morphisms are clearly mirrored by the transcriptional 
patterns. The green-fruited species are distinctly claded 
separately from the colored-fruited species, and the 
colored species exhibit similar relationships between 
themselves, with both approaches. Both the sequence-
based tree and the transcriptome-based relationships 
point to a common ancestor of the endemic Galapagos 
species, presumably the founder transferred from the 
mainland, that itself shared a common ancestor with the 
green-fruited wild species. Both methods distinguish 
between the accessions of the two species endemic to the 
Galapagos Islands, cheesmaniae and galapagense. Simi-
larly, the two pimpinellifolium subgroups, representing 
Peruvian and Ecuadorian origins (Supplementary Table 
S1), are distinguished by both methods.

In conclusion, we present a comprehensive data of 
gene transcripts derived from developing and ripe fruit 
of cultivated tomato and its wild relatives. The data can 
serve as a repository for identifying genetic variability 
in both expression levels and sequence polymorphisms. 
The latter can identify non-synonymous amino acid 
sequence differences with its many implications on pro-
tein function. The data can also be harnessed for improv-
ing the annotated genome, expanding on the Solanum 
pan-genome through a pan-transctriptome and, perhaps 
most significantly, shedding light on the evolution of the 
tomato clade and the relationships between the primitive 
green-fruited wild species, the presumably intermediate 
stages of tomato evolution (wild, colored-fruited species) 
and the cultivated tomato.

We have previously utilized this data for the identi-
fication of tomato genetic variability and gene identifi-
cation. These included studies of the plant cholesterol 
biosynthetic pathway by a multi-species gene co-expres-
sion analysis (Sonawane et  al. 2016), identification of 
genes involved in novel glycoalkaloid metabolism (Son-
awane et al. 2022), surveys of genetic variability for the 
SWEET sugar transporter family (Shammai et al. 2018) 
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and for the prenyltransferase family, involved in volatile 
terpene metabolism (Hivert et  al. 2020). Our hope is 
that this data, combined with other tomato expression 
databases, such as TED (http://​ted.​bti.​corne​ll.​edu/), TEA 

(https://​tea.​solge​nomics.​net/) and TomExpress (http://​
tomex​press.​toulo​use.​inra.​fr/) will serve the research and 
breeding communities in furthering the study of tomato 
genetics and improvement.

Fig. 1  Gene expression among Solanum accessions. A Venn diagram indicating number of genes expressed in the combined data, arranged 
according to developmental stages. B,C Examples of retrievable data for Solyc03g083910 (TIV) for developmental stages (B, Supplementary Table 
S2) and ripe fruit (C, Supplementary Table S3). D IGV screen shot of reads for the six wild species (1 accession each) for Solyc03g083910 (TIV). E,F 
Genetic relationships based on E) gene expression patterns of ripe fruit and F) sequence polymorphisms

http://ted.bti.cornell.edu/
https://tea.solgenomics.net/
http://tomexpress.toulouse.inra.fr/
http://tomexpress.toulouse.inra.fr/
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Abbreviations
lyc	� lycopersicum
che	� cheesmaniae
gal	� galapagense
pim	� pimpinellifolium
chm	� chmieliewskii
hab	� habrochaites
per	� peruvianum
pen	� pennellii
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