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Abstract 

Over the past decade, systems biology and plant-omics have increasingly become the main stream in plant biology 
research. New developments in mass spectrometry and bioinformatics tools, and methodological schema to inte-
grate multi-omics data have leveraged recent advances in proteomics and metabolomics. These progresses are driv-
ing a rapid evolution in the field of plant research, greatly facilitating our understanding of the mechanistic aspects 
of plant metabolisms and the interactions of plants with their external environment. Here, we review the recent 
progresses in MS-based proteomics and metabolomics tools and workflows with a special focus on their applications 
to plant biology research using several case studies related to mechanistic understanding of stress response, gene/
protein function characterization, metabolic and signaling pathways exploration, and natural product discovery. We 
also present a projection concerning future perspectives in MS-based proteomics and metabolomics development 
including their applications to and challenges for system biology. This review is intended to provide readers with an 
overview of how advanced MS technology, and integrated application of proteomics and metabolomics can be used 
to advance plant system biology research.
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Introduction
Plant research includes a wide range of scientific disci-
plines that involves all aspects of plant biology. It’s impor-
tance is becoming more apparent as we recognize how 
broadly plants impact human life, through nutrition, food 
security, medicine, biofuels and environmental sustaina-
bility (Gemperline et al. 2016a). Plant research is essential 
to address key issues in environmental science, agricul-
ture and medicine that are closely associated with human 
health and wellbeing. Over the past decade, systems biol-
ogy studies have increasingly become the main stream in 
plant research (Sheth and Thaker 2014), leveraging the 

development of omics technologies through multi-omics 
integration and data processing (Feussner and Polle 2015; 
Ramalingam et al. 2015; Pazhamala et al. 2021).

The proteome is a time-dependent expression of an 
organism’s genome that is characterized with regard 
to protein localization, interactions, modification and 
turnover. Proteomics is the systematic identification and 
quantification of an organism’s proteome at a given time. 
It is a useful approach to discover biomarkers for spe-
cific stimuli, or for determining relevant biological path-
ways, molecular mechanisms and functional networks 
at the levels of biological organization (i.e., cell, tissue, 
organ etc.). Over the last two decades, comprehensive 
genomic sequence information has become available for 
an ever-increasing number of species. The development 
of next-generation sequencing and single molecule, real-
time sequencing technologies for RNA sequencing has 
permitted genome-wide expression analysis in response 
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to various stimuli, providing unparalleled opportunities 
for biomarker discovery by transcriptomics. However, 
mRNA levels do not provide a complete picture of cellu-
lar function. Most cellular functions such as plant stress 
tolerance involve multiple interactions of proteins and 
their metabolites. Furthermore, protein expression levels 
are dependent not only on transcript levels but also on 
translational efficiency and regulated degradation (Batelli 
et al. 2007; Liu et al. 2016b). Finally, proteins function at 
specific sub-cellular localizations and are susceptible to 
post-translational modifications (PTMs, often required 
to enable function) in ways that cannot be predicted 
from transcript expression levels or from the genomic 
sequence. Therefore, it is essential to supplement tran-
scriptomics data with direct measurement of protein 
abundance.

Metabolomics is another important component of 
“omics” lexicon, providing a global identification and pro-
file of all metabolites (the metabolome) in a given biologi-
cal system (Dettmer et al. 2007; Alseekh and Fernie 2018; 
Pinu et al. 2019). It is a rapidly evolving field of research 
in plant research as changes in metabolite abundance 
represent the chemical flux generated from various bio-
chemical reactions, molecular mechanisms and biologi-
cal pathways. Their proximity to phenotype is thought 
to make them more representative of the cell/organism’s 
physiological state, more directly reflecting the cascading 
effects of the environment, gene expression and regula-
tory processes (Astarita and Langridge 2013; Guijas et al. 
2018a). Thus, metabolomics is becoming a powerful tool 
to study plant molecular phenotypes for plant growth 
and development, and stress response.

Proteomics and metabolomics both rely on three basic 
technological cornerstones that include a method of frac-
tionation to simplify complex mixtures; mass spectrome-
try (MS) to selectively acquire the data needed to identify 
and quantify individual peptides and metabolites, and 
bioinformatics analyses to correlate the empirical mass 
data with genomic or metabolite databases. In the past 
decade, the advent of high mass accuracy/resolution MS 
coupled with liquid/gas-chromatography, the develop-
ment of new bioinformatics tools, and methodological 
schema for multi-omics integration, have provided not 
only high-throughput and high quality data generation 
but also significantly contributed to both biomarker dis-
covery and mechanistic studies in plant research (Feuss-
ner and Polle 2015; Ramalingam et  al. 2015; Gao et  al. 
2017; Tang et al. 2020; Pazhamala et al. 2021). Recently, 
omics research communities have begun to develop MS-
based proteomics and metabolomics approaches appli-
cable to the single cell-type and single cell levels. These 
new developments seek to unravel the unique func-
tions of distinct cell types and/or single cells, despite the 

tremendous technical challenges involved, including the 
sensitivity limitations related to the nature of the sample, 
miniaturization and presence of cell wall in plant single 
cell analysis (Labib and Kelley 2020; Hu et al. 2021a; Tay-
lor et al. 2021).

In this article, we focus on new advancements in prot-
eomics and metabolomics technologies including discov-
ery proteomics, quantitative PTMs, protein interactions, 
untargeted metabolomics, fluxomics, targeted metabo-
lomic and their applications in plant biology research. We 
also highlight the latest developments in single-cell-type 
and single-cell proteomics and metabolomics in plants 
as outlined in Fig. 1. We present an intensive review on 
how these applications are leveraged by the advanced MS 
technologies and the development of reoptimized work-
flows that enable omics research in plants.

Advances in proteomics technologies
Experimental design, sample preparation, and separation 
technologies
Over the last two decades, proteomics has been grown in 
prominence as a strategy to study plant biology (Agrawal 
et al. 2013; Liu et al. 2019; Jorrin Novo 2021). Similar to 
other fields (Bhawal et  al. 2020; Nakayasu et  al. 2021) a 
rigorous experimental design is essential for meaning-
ful biological interpretation. This requirement includes 
all phases of the experiment including plant cultivation, 
application of treatments, choice of plant tissues, etc. 
(Rose et al. 2004; Atwell 2016). The most critical steps in 
any proteomics study are protein extraction and sample 
preparation (Rose et al. 2004; Komatsu and Jorrin-Novo 
2021). Given the complexity and diversity of proteins 
with respect to molecular weight, charge state, hydro-
phobicity, dynamic range, modification state and cellular 
distribution, any single extraction protocol will incorpo-
rate biases with respect to particular classes of proteins, 
particularly in whole body or organ extracts. An effective 
way to minimize this bias is to focus on a subfraction of 
the proteome by targeting a particular tissue, cell type 
or subcellular structure (Zhang et  al. 2011; Bouchnak 
et  al. 2019). A variety of sample preparation strategies 
incorporating many separation technologies have been 
developed for an array of applications. There are two 
main approaches: an electrophoretic-based approach 
(also known as a protein-based approach) and a gel-free 
approach (also called a peptide-based approach). The 
electrophoretic approach has been largely abandoned as 
a viable experimental strategy, although it still finds occa-
sional use in a number of niche applications (Jorrin-Novo 
et  al. 2019), it is generally considered an archaic tech-
nique putting it beyond the scope of the current work.

Since the first decade of this century chromatographic 
separation technologies (ultra-high performance liquid 
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chromatography (UHPLC) and associated columns) and 
MS hardware have made dramatic advances and these 
have enabled the shift from gel-based to chromatog-
raphy-based proteomics employing both label-free or 
label-assisted techniques for quantitation. Most cur-
rent strategies involve separation/quantification at the 
peptide level. Complex protein samples are denatured 
and enzymatically digested, and then the resulting pep-
tide mixture is separated using one or two dimensions of 
LC (2D-LC). The choice between these two approaches 
hinges on 1), the complexity of the proteome being inves-
tigated and 2), the depth of coverage required. One-
dimension approaches have the advantage of speed and 
utilize a minimum of instrument time but at the cost 
of reduce proteome coverage and a bias in favor of the 
largest and most abundant proteins. Two dimensional 
approaches utilize significantly larger amounts of instru-
ment time and increase turnaround but dramatically 
increase proteome coverage and minimize the bias for 
large and abundant proteins. There are several standard 

approaches to achieve the first dimension of separation 
that include high pH reversed-phase LC (RPLC), strong 
cation ion exchange (SCX), hydrophilic-interaction 
chromatography (HILIC), and affinity chromatography. 
The second dimension of chromatography is almost 
always low-pH RPLC coupled directly with tandem mass 
spectrometry. These approaches have emerged as the 
preferred tools for protein profiling and PTMs charac-
terization (Ceballos-Laita et al. 2020).

At the whole protein level, affinity purification MS (AP-
MS) was a major breakthrough in plant research and is 
used to investigate protein degradation, PTM identifica-
tion and localization as well as protein-protein interac-
tions (Bontinck et  al. 2018; Zhang et  al. 2019). It works 
on the basic principle of reversible interaction between 
the affinity ligand and the targeted proteins or specific 
PTMs. While used less frequently, this approach has 
been successfully applied at the peptide level as well. A 
related approach called Immunoprecipitation is a single-
step purification that uses an antibody specific for the 

Fig. 1  Major types of mass spectrometric based proteomics and metabolomics techniques used for global proteins and metabolites study that are 
applicable to plant research
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bait protein or a generic antibody against an exogenous 
affinity tag covalently linked to the bait protein. This sin-
gle-step AP can also be performed without the need for 
specific antibodies such as the streptavidin-binding pep-
tide-tag and His tag, which enable trapping with strepta-
vidin and Ni2+ resins, respectively. Hence this technique 
is also referred as pull-down. Due to its efficiency and 
simplicity, this approach has gained a growing popularity 
in plant research, but development of specific antibodies 
against targeted proteins is expensive and time consum-
ing. As a result, generic antibodies for specific affinity 
tags including florescent proteins like GFP are most com-
monly used for purification. One of the major limitations 
of this approach is the requirement for constructing a 
recombinant clone expressed in an appropriate host cell. 
Other limitation includes tedious experimental proce-
dures and non-specific binding that can result in false 
positive results. Affinity binding is also commonly used 
as an enrichment method of PTMs like phosphorylation 
with immobilized metal affinity chromatography (Bon-
tinck et  al. 2018). Laser capture microdissection (LCM) 
is a technique by which cells of a single-type can be har-
vested from tissue sections visualized under microscope 
(Chen et  al. 2020b). Harvested cells can provide DNA, 
RNA, and protein for the profiling of genomic charac-
teristics, gene expression, and protein abundance from 
single-type of cell. Earlier, proteomic analysis of LCM tis-
sues required a larger number of cells, however this prob-
lem is dramatically improved with the advent of more 
powerful separation technologies and highly sensitive 
mass spectrometers.

Advanced MS technologies for proteomics
The growing list of applications that are amenable to pro-
teomics has been driven by the rapid advancement of 
MS technologies over the last decade. The latest Orbit-
rap Eclipse Tribrid mass spectrometer with advanced 
quadrupole mass filter, dual-pressure linear ion trap and 
Orbitrap mass analyzers, is an excellent example (Yu et al. 
2020). The system provides maximum analytical capabil-
ity and flexibility for both top-down proteomics (Kelleher 
2004; Cleland et al. 2017) in direct analysis of intact pro-
teins, and bottom-up proteomics for analysis of peptides 
resulting from the digestion of complex protein mixtures. 
Bottom-up proteomics has demonstrated broad appli-
cations to plant research and is the focus of this review. 
Another excellent example is the advancement of ion 
mobility spectrometry (IMS)-based MS such as trapped 
IMS in timsTOF Pro (Meier et  al. 2021), Twave IMS in 
SYNAPT G2-Si (Hernandez-Mesa et  al. 2020) and field 
asymmetric IMS (FAIMS) in Orbitrap mass spectrome-
ters (Hebert et al. 2018). IMS, as a gas phase “electropho-
resis” technique offers rapid structural separation with 

measured collision cross-section (CCS) values, providing 
an additional dimension of separation for isobaric mol-
ecules and isomers in complex samples (Burnum-John-
son et  al. 2019). Thus, IMS-based MS greatly facilitates 
fast, sensitive and robust proteomics and metabolomics 
profiling, allowing proteomics for a true high-throughput 
era. Furthermore, IMS-MS has been demonstrated in 
contributing greatly to the recent success of single-cell 
proteomics for increased selectivity by removing singly 
charged species (Kelly 2020).

Effective MS-based proteomics strategies have been 
developed to address the different biological and ana-
lytical challenges depicted in Fig. 2. MS data acquisition 
for most labeled or label-free proteomics protocols the 
experiments are carried out in a data dependent acqui-
sition (DDA) mode with dynamic exclusion to minimize 
the collection of redundant MS spectra (Hart-Smith 
et al. 2017). DDA defines the maximal scan rate at which 
mass spectrometers can acquire MS/MS data for near 
co-eluting peptides. Another data acquisition strategy is 
data-independent acquisition (DIA) (Zhang et al. 2020a), 
which has been gaining acceptance in recent years. DIA 
involves parallel MS/MS analysis of multiple precur-
sor ions simultaneously, allowing for improvements in 
quantitative reproducibility, depth of proteome coverage 
while allowing for a post hoc targeted interrogation of the 
data using either in-silico fasta database or specially con-
structed spectral libraries.

Quantitative proteomics
One of the advantages of MS-based proteomics is the 
ability to systematically highlight changes in protein 
abundance between biological samples through quan-
titative analysis. Protein abundance difference reflects 
different regulated states of the cells, a disease state or 
other biological perturbations such as stress from biotic 
or abiotic factors or experimental manipulation. Quan-
titative proteomics for protein abundance profiling is 
widely-used technique to establish a chemical phenotype 
associated with a given biological states and to identify 
biomarkers associated with specific biological state such 
as disease, abiotic stress. However, it is extremely impor-
tant to evaluate the replicate datasets to dissect and dis-
tinguish biological variations from technical variations 
in pilot experiments whenever possible. So far either 
stable isotope-labeling methods or label-free techniques 
have been frequently applied in quantitative proteomics 
studies.

The isotopically coded chemical label-based 
approaches remain most popular in quantitative pro-
teomics due to their multiplexing capabilities which 
couple high throughput, quantitative accuracy and com-
patibility with 2D liquid chromatography tandem mass 
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spectrometry (LC-MS/MS) analysis. Chemical labeling 
using isotope coded isobaric reagents like tandem mass 
tag (TMT) (Thompson et al. 2003) and Isobaric tags for 
relative and absolute quantification (iTRAQ) (Ross et al. 
2004) represent a high-throughput and robust technique 
that requires further discussion. They have emerged as 
one of the most widely-used techniques in quantitative 

shotgun analysis that is particularly useful for global 
proteome profiling and associated functional changes 
in plants. The isobaric tag consists of an amine-specific 
reactive group for labeling free amine groups of peptides, 
a balance group and a reporter group released under 
MS2 or MS3 fragmentation that provides mass signature 
for relative quantitation. The major advantage of TMT 

Fig. 2  Schematic diagram represents general plant proteomics workflows. Proteins extracted from plant materials are fractionated using either 
gel-based or gel-free techniques. Three major types of proteomics analysis for identification and quantitation of posttranslational modifications, 
protein-protein interaction and quantitative proteomics were presented. The MS raw data generated from each workflow using different mass 
spectrometric techniques are carried out by database search, statistical analysis and bioinformatics analysis. Finally, the outcomes are to be further 
validated for either generating biological hypothesis or validation of initial mechanistic hypothesis
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labeling is that it can afford a high degree of multiplexing 
(up to 18 plex) since it is able to monitor up to 18 sam-
ples in a single analysis (Li et  al. 2021b). The main dis-
advantage of MS2-based quantitation is the co-isolation 
and co-fragmentation of near isobaric labeled ions, which 
causes a ratio distortion problem (Ting et al. 2011). This 
distorted ratio issue can be dramatically reduced using 
synchronous precursor selection (SPS) MS3 method 
(McAlister et al. 2014) in which multiple MS2 fragment 
ions (acquired for peptide identification) are further 
fragmented in MS3 yielding a reporter ion population 
without the interfering signals. However, due to the 
extended cycle time associated with the inclusion of an 
MS3 scan, the SPS MS3 approach results in a decreased 
spectral acquisition rate and a reduction in the number 
of proteins quantified of ≈ 30% compared to traditional 
MS2-DDA analysis. To maintain in-depth proteome 
coverage with accurate and precise quantitative profil-
ing, a real-time search (RTS) SPS MS3 method has been 
developed recently (Erickson et al. 2019). RTS SPS MS3 
approach carries out MS2 spectral identifications in real 
time within milliseconds so that only identified peptides 
can trigger quantitative MS3 scan, which increases the 
number of productive precursors that are subject to MS3 
offsetting the longer cycle time and resulting in enhanced 
proteome coverage and accurate TMT quantitation (Fu 
et al. 2021).

Another popular labeling approach is stable-isotope 
labelling by amino acids in cell culture (SILAC). This has 
been covered in literally many excellent prior reviews of 
this subject (Gruhler et  al. 2005; Matthes et  al., 2014). 
Few studies have been done with SILAC labeling in plant 
research, due to the requirement for metabolically labe-
ling under culture conditions. So far, most SILAC-based 
labeling proteomics studies have been done to study the 
formation of signal-dependent protein complexes, and 
modification-dependent protein-protein interactions in 
Arabidopsis thaliana seedlings by SILAC, but subopti-
mal labeling efficiency have been known to compromise 
quantitation (Gruhler et al. 2005; Thelen and Peck 2007; 
Schutz et al. 2011).

Despite the popularity of label-based methods, the 
main limitations of the label methods include cost of 
isotopic labeling and increased complexity of the experi-
mental procedures which can lead to sample loss and add 
experimental variations. As a result, label-free quantita-
tion (LFQ) approaches have recently been widely used 
as alternatives. In LFQ analysis, the intensities of identi-
cal peptides from two or more samples can be compared 
directly by traditional DDA method. However, recent 
developments in bioinformatics software allows DIA 
to be comparable with DDA in the number of peptide 
identifications for label-free samples while still allowing 

precise quantification (Hu et  al. 2016). The improved 
protein coverage by DIA makes it possible to carry out 
label-free quantitative analysis of very complex samples 
(Rosenberger et al., 2014).

Protein PTMs: plant phosphoproteomics
PTMs are important chemical changes of proteins that 
increase proteome diversity tremendously and allow for 
effective regulation of cellular processes. More than 400 
distinct types of PTMs have been found which have been 
shown to impact protein function (Khoury et  al. 2011). 
Therefore, the identification and mapping of PTMs 
are important activities because they help to define the 
proteome in terms of “proteoforms”. These PTM stud-
ies typically require an enrichment step due to the low 
stoichiometry of most PTMs. The presence of PTMs is 
implied by specific mass shifts, thus the specific site of 
the modification can be deduced through the analysis of 
fragmentation data (MS2-MSn). Historically, CID or HCD 
fragmentation has been used to analyze PTM peptides. 
However, several non-ergodic fragmentation strategies 
(ETD, ECD, etc.) have proven valuable for the analysis of 
labile PTMs (Chi et al. 2007).

The most extensively studied PTM types are phospho-
rylation (on S/T and Y residues), acylation (acetylation, 
succinylation and malonylation on K), ubiquitination (K) 
and glycosylation (N, S/T and hydroxyproline) (Ramazi 
and Zahiri 2021). Phosphorylation is one of the most 
important and well-studied reversible PTMs in plants. 
Kinases catalyze protein phosphorylation by transfer-
ring a phosphoryl group typically from ATP or ADP to 
the hydroxyl group of S/T/Y residues, but phosphoryla-
tion on several unusual residues such as His, Asp, Cys, 
Arg and Lys has been reported (Hardman et  al. 2019). 
Phosphatases are responsible for removing the phosphor 
group from the modified residues. Phosphorylation in 
plants regulates a wide range of cellular processes such 
as transmembrane signaling, intracellular amplification 
of signals, and cell-cycle control including hormone sens-
ing and environmental stress responses (Schulze 2010; 
Ingelsson and Vener 2012). It often leads to protein struc-
tural changes that can directly modulate protein activity, 
and induce changes in interaction partners or subcellu-
lar localization (Li et  al. 2015b). Plant genomes encode 
twice the number and diversity of kinases compared with 
mammalian genome, indicating the importance of the 
plant phosphoproteome in regulating responses to both 
abiotic and biotic stresses (Zulawski et  al. 2013; Silva-
Sanchez et al. 2015).

Considerable analytical challenges remain for the study 
of PTM in plants particularly in phosphoproteomics 
due to a number of factors including the high dynamic 
range and complexity of the plant proteomes, the unique 
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challenges associated with the plant cell walls, and the 
interference from chlorophyll and secondary metabolites. 
A universal protocol incorporating optimized protein 
extraction procedures involving guanidine hydrochloride, 
methanol-chloroform precipitation, and phase-transfer 
surfactant assisted tryptic digestion has been reported 
recently. This new approach was found to increase the 
coverage of tomato phosphoproteome more than 2-fold 
compared with the standard protocol (Hsu et  al. 2018). 
In the past decade, many phospho-enrichment strate-
gies have been developed to enhance the identification 
of low abundant phosphopeptides and phosphoproteins 
(Batalha et  al. 2012; Silva-Sanchez et  al. 2015). Immo-
bilized metal affinity chromatography (IMAC) is often 
coupled with strong cation exchange (SCX) for two-step 
phosphopeptide enrichment in large-scale phosphoprot-
eomic studies. However, more recently the use of metal 
dioxide affinity chromatography such as titanium diox-
ide (TiO2) and zirconium dioxide (ZrO2) has become 
more common. A serial enrichment procedure with 
both TiO2 and ZrO2 has been shown to increase the effi-
ciency of capturing phosphopeptides (Gates et al. 2010). 
A combination of TiO2 enrichment and HILIC fractiona-
tion for subsequent LC-MS/MS analysis resulted in the 
identification of 1500 phosphopeptides from 685 phos-
phoproteins in the leaves of two varieties of wheat that 
suggested differential regulation of the phosphorylation 
status of signaling proteins, transcription and transla-
tion regulators, and membrane-associated proteins (Yang 
et al. 2013a). Given the required enrichment steps, most 
phosphoproteomics studies are conducted using label-
free LC-MS/MS workflows (Engelsberger and Schulze 
2012; Wang et al. 2013a; Qiu et al. 2016; Ford et al. 2020; 
Li et al. 2021c). However, iTRAQ/TMT labeling has also 
become popular in plant phosphoproteomics (Yang et al. 
2013a; Fan et  al. 2014) due to their shared capability to 
multiplex up to 18 samples in a single experiment for 
both enrichment and LC-MS/MS analysis. Furthermore, 
this approach allows for parallel global proteome analy-
sis using either a TiO2 flow-through fraction (Yang et al. 
2013a) or a small aliquot of the sample for the quantita-
tive work while reserving the majority of the sample for 
enrichment and phosphopeptide analysis (Yang et  al. 
2018). Parallel proteomics and phosphoproteomics anal-
yses allow one to distinguish the changes for each of the 
phosphorylation sites of a given protein from the change 
of that proteins general abundance and is particularly 
useful for determining the biologically important sites of 
proteins that contain multiple phosphorylated sites with 
different degrees of change.

It should be pointed out that identifications, localiza-
tions, and quantifications of different combinations of 
PTMs on the same protein (various proteoforms) are 

generally difficult by traditional bottom-up proteomics. 
However, both top-down proteomics for direct analysis 
of whole proteins and middle-down proteomics for anal-
ysis of large peptides by limited proteolysis can be used 
to detect multiple co-occurring PTMs in a specific pro-
teoform and a large peptide, respectively (Leutert et  al. 
2021). Top-down proteomics for characterization of pro-
teoforms has been well covered by several recent review 
articles (Schaffer et al. 2019; Carbonara et al. 2021; Melby 
et al. 2021). We will omit this topic and direct the inter-
ested reader to these.

Protein‑protein interactions and protein complexes
Protein–protein interactions (PPIs) are fundamental 
to all biological processes (Cusick et al. 2005). Vital cel-
lular functions such as DNA replication, transcription 
and mRNA translation, require the coordinated action of 
many proteins that are assembled into an array of multi-
protein complexes of distinct composition and structure. 
Many important biological processes in plants such as 
organ formation, homeostasis control, plant defense, sig-
nal transduction and stress response are comprised of, 
and regulated by, dynamic signaling networks of inter-
acting proteins that directly or indirectly respond to 
specific effector molecules (Bontinck et  al. 2018; Struk 
et al. 2019). Since almost all proteins interact with other 
molecules a comprehensive determination of PPIs within 
an organism is an essential aspect of systems biology 
that is used to uncover unknown functions and to gain 
insight into complex cellular networks. However, under-
standing the dynamic nature of protein complexes with 
respect to composition and stability and cellular state 
presents a significant challenge. Many different methods 
for determining PPIs have been developed and the topic 
has been well-reviewed (Struk et al. 2019). These include 
the yeast two hybrid (YTH) system, the first technique 
used for large-scale interactome maps (Uetz et al. 2000), 
affinity purification coupled to MS (AP-MS) (Gingras 
et  al. 2007), proximity labeling coupled to MS (PL-MS) 
(Kerbler et al. 2021) and bimolecular fluorescence com-
plementation (Miller et  al. 2015). Substantial advances 
in determining composition, regulation and function of 
molecular complexes have been obtained by MS-based 
proteomics (called interaction proteomics or interactom-
ics) leading to a greater understanding of the molecular 
basis of complex biological processes (Aebersold and 
Mann 2016).

Affinity purification and mass spectrometry (AP-MS) 
is one of the enabling developments for PPI studies. Tar-
geted proteins complexes are isolated from plants using 
antibodies against either the protein of interest or a 
tagged protein, which is often called co-immunoprecip-
itation (Co-IP). It has the great advantage of capturing 
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the physiological state, abundance, and interactions of 
the targeted protein without the need for cloning or over-
expression. The protein complexes isolated by Co-IP are 
then eluted and analyzed by LC-MS/MS (Fukao 2012). 
These affinity-based methods have improved greatly 
because of the development of highly sensitive MS 
instrumentation and novel bioinformatics approaches 
(Armean et  al. 2013; Qu et  al. 2017). To minimize the 
impact of non-specific binding, a second purification 
step has been introduced by means of a double affinity 
tag. One of the most frequently applied tandem affin-
ity purification tags in plant research is the GS tag and 
its derivatives (Van Leene et  al. 2007). The GS tag con-
sists of two immunoglobulin domains of protein G and 
a streptavidin-binding peptide separated by a cleavage 
site. AP-MS is used to study plant growth and develop-
ment in the relevant biological contexts, such as specific 
plant organs, for example, flowers, leaves and roots and 
provides an enhanced view of the protein complex com-
position (Batelli et  al. 2007; Chang et  al. 2009). A com-
bined AP-MS with an LFQ method has been developed 
(Keilhauer et  al. 2015) and well described in a recent 
review article (Kerbler et  al. 2021). This has become a 
common approach to differentiate true interactors from 
the background. In this method, the increased amounts 
of unspecific binding proteins can be advantageous, 
because they are used in the postprocessing pipeline for 
a more exact normalization and as a kind of quality con-
trol. The LFQ combined with AP-MS can also be used to 
assess the dynamics of PPIs during cellular signaling or 
after cellular perturbations, because protein complexes 
copurified with the same bait under two different con-
ditions can be compared in a quantitative manner. The 
Co-IP allows for the identification of PPIs in certain tis-
sues or during specific developmental stages and in dif-
ferent genetic backgrounds and is also considered one of 
the standard methods for PPI validation. However, this 
AP-MS technique does not provide information about 
the direct interaction between proteins but rather about 
their coexistence in a higher order protein complex (Xing 
et  al. 2016). The topology of the protein interactome is 
not achievable from the AP-MS strategy. PL-MS uses 
enzymes that produce reactive molecules for covalently 
interacting with proteins in close proximity. Although 
the use of PL-MS in plant still remains its infancy, recent 
development of new proximity labeling enzymes Tur-
boID in planta (Zhang et  al. 2020b), pupylation-based 
interaction tagging (Pup-IT) for PPIs at membranes (Siva 
Sankar and Dengjel 2021) and limited proteolysis-MS 
(LiP-MS) (Pepelnjak et  al. 2020) for protein-small mol-
ecule interactions has considerably expanded its applica-
tions in plants.

Another development for the identification of PPIs 
in plants involves cross-linking mass spectrometry 
(XL-MS) (Zhu et al. 2016a; Liu et al. 2018). Chemical 
cross-linking followed by mass spectrometry analy-
sis enables identification of proximal amino acid resi-
dues within protein complexes, providing vital insights 
into the structure and interactions of proteins/pro-
tein complexes (Chavez and Bruce 2019). Notably, 
the recent development of a MS-cleavable cross link-
ers such as disuccinimidyl sulfoxide (Kao et  al. 2011) 
and disuccinimidyl dibutyric urea (DSBU) (Ihling et al. 
2020) allows to cleave cross-linked peptides during 
MS/MS for subsequent MS3 acquisition of cleaved 
peptides, which facilitates peptide identification using 
traditional database based approaches (Liu et al., 2015) 
and allows multiplexed quantitative XL-MS (Yu et  al. 
2016). In addition, hydrogen–deuterium exchange 
mass spectrometry (HDX–MS) is able to determine 
the interaction surfaces and solvent-exposed regions 
and is emerging as a powerful methodology to study 
protein dynamics, protein folding, protein-protein 
interactions, and protein-small molecule interactions 
(Masson et  al. 2019; Li et  al. 2020d; Gutkowska et  al. 
2021).

The latest development of thermal proteome profil-
ing (TPP) technology can also be used for interrogat-
ing protein-protein interactions (Mateus et  al. 2020). 
This TPP was initially developed for drug discovery in 
screening of the targeted proteins by the known ligands 
(drugs) under a more physiologically relevant environ-
ment such as intact live cells level (Savitski et al. 2014). 
The basic concept of TPP is that proteins become more 
resistant to heat-induced unfolding when complexed 
with a ligand or other macromolecules. Combining 
the principle of the cellular thermal shift assay (TSA) 
with multiplexed quantitative MS such as TMT10-plex 
compared to the lysate TSA, TPP allows for detecting 
protein thermal stability (melting temperature, Tm) 
on a proteome-wide scale (Franken et al. 2015). TPP is 
becoming a powerful tool for detecting a wide range of 
physiological changes in protein state: protein-metabo-
lite interactions, post-translational modifications, pro-
tein-protein and protein-DNA interactions. (Mateus 
et al. 2020) and an example in plant has been reported 
in Arabidopsis thaliana (Volkening et  al. 2019). How-
ever, its limitations include: 1) requirement of sub-
stantially changed percentage of the population of any 
single protein sequence to be reflected in its altered 
Tm, which will lead the induced change of Tm by most 
PTMs with low stoichiometry difficult to be detected; 
2) no information on domain change and what amino 
acids responsible for identified proteins with altered 
Tm. Therefore, TPP is best used in conjunction with 
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other structural proteomics methods (Blackburn et  al. 
2022).

MS data processing, assembly and bioinformatics
A key advancement in MS-based proteomics was the 
development of algorithms in database search software 
for peptide identifications (which infer protein iden-
tity) by matching the observed masses of precursor and 
fragment ions with those predicted from a sequence 
database. The algorithms allow for automated interroga-
tion of genomic databases with acquired large MS and 
MS/MS datasets using predetermined parameters and 
other search criteria to generate lists of putative peptide 
spectrum matches. As genome-wide next-generation 
sequencing and RNA sequencing technologies continued 
to advance, the number of species with fully sequenced 
genomes has exponentially increased, including 341 
plant genomes (https://​www.​ncbi.​nlm.​nih.​gov/​genome) 
and 181 horticultural species (Chen et  al. 2019). Thus, 

the lack of databases is no longer a major bottleneck in 
most plant proteomics research. Most protein sequence 
databases derived from plant genomic sequences can be 
downloaded from NCBI Viridiplantae, GenBank, DDBJ, 
and UniProt. Several specific sequence retrievals can also 
be performed from databases dedicated to plants such 
as Phytozome, plaBi, and Gramene database, which are 
subsets of the Ensembl Plants database and PlantGDB. 
However, large proteomics datasets acquired by rapidly 
evolving MS technology with different acquisition work-
flows employing multiple fragmentation methods present 
a number of challenges to determine the correct peptide 
assignments to MS/MS spectra. These challenges require 
that extremely powerful search algorithms be constantly 
enhanced and developed to take full advantage of the 
data acquisition technology. Table 1 shows a partial 
list of commonly used database search software having 
the search engines tools for DDA proteomics raw files 
from five major mass spectrometer vendors (Thermo, 

Table 1  A partial list of commonly used database search software tools for proteomics analysis

Software name Latest version Source availability Developer URL and references

Proteome Discoverer 2.5 proprietary Thermo Scientific https://​www.​therm​ofish​er.​com/​order/​catal​
og/​produ​ct/​OPTON-​30810

ProteinPilot 5.0.2 proprietary Sciex https://​sciex.​com/​produ​cts/​softw​are/​prote​
inpil​ot-​softw​are

ProteinLynx Global Server 3.0.3 proprietary Waters https://​www.​waters.​com/​waters/​en_​US/​
Prote​inLynx-​Global-​SERVER-​(PLGS)/​nav.​htm?​
cid=​51382​1&​locale=​en_​US

PaSER 2022 proprietary Bruker https://​www.​bruker.​com/​en/​produ​cts-​and-​
solut​ions/​mass-​spect​romet​ry/​ms-​softw​are/​
paser

MassHunter 11.0 proprietary Agilent https://​www.​agile​nt.​com/​en/​produ​ct/​softw​
are-​infor​matics/​mass-​spect​romet​ry-​softw​are/​
data-​analy​sis

MASCOT 2.8 proprietary Matrix Science Inc https://​www.​matri​xscie​nce.​com/​server.​html; 
(Perkins et al. 1999)

MaxQuant 2.0.3.0 Freeware Max Planck Institute of Biochemistry https://​www.​maxqu​ant.​org/; (Cox and Mann 
2008)

Byonic 4.2 proprietary Protein Metrics Inc https://​prote​inmet​rics.​com/​byos/; (Bern et al. 
2007)

Scaffold 5.1.0 proprietary Proteome Software, Inc. https://​www.​prote​omeso​ftware.​com/​produ​
cts/​scaff​old-5;(Searle 2010)

MSFragger 3.4 Freeware University of Michigan https://​www.​nesvi​lab.​org/​softw​are.​
html;(Kong et al. 2017)

OMSSA 2.1.19 Freeware The NIH intramural research program https://​ftp.​ncbi.​nlm.​nih.​gov/​pub/​lewisg/​
omssa/;(Geer et al. 2004)

Phenyx Phenyx ® proprietary Geneva Bioinformatics (GeneBio) https://​ionso​urce.​com/​funct​ional_​revie​ws/​
Phenyx/​phenyx-​web.​htm; (Colinge et al. 
2003)

PRAKS DB Xpro proprietary Bioinformatics Solutions Inc. https://​www.​bioin​for.​com/;(Zhang et al. 
2012)

Protein Prospector 6.3.1 open source University of California, San Francisco https://​prosp​ector.​ucsf.​edu/​prosp​ector/​
mshome.​htm;(Chalkley et al. 2005)

X!Tandem 2017.02.01 open source University, Ghent, Belgium http://​www.​thegpm.​org/​TANDEM/​index.​
html;(Muth et al. 2010)

https://www.ncbi.nlm.nih.gov/genome
https://www.thermofisher.com/order/catalog/product/OPTON-30810
https://www.thermofisher.com/order/catalog/product/OPTON-30810
https://sciex.com/products/software/proteinpilot-software
https://sciex.com/products/software/proteinpilot-software
https://www.waters.com/waters/en_US/ProteinLynx-Global-SERVER-(PLGS)/nav.htm?cid=513821&locale=en_US
https://www.waters.com/waters/en_US/ProteinLynx-Global-SERVER-(PLGS)/nav.htm?cid=513821&locale=en_US
https://www.waters.com/waters/en_US/ProteinLynx-Global-SERVER-(PLGS)/nav.htm?cid=513821&locale=en_US
https://www.bruker.com/en/products-and-solutions/mass-spectrometry/ms-software/paser
https://www.bruker.com/en/products-and-solutions/mass-spectrometry/ms-software/paser
https://www.bruker.com/en/products-and-solutions/mass-spectrometry/ms-software/paser
https://www.agilent.com/en/product/software-informatics/mass-spectrometry-software/data-analysis
https://www.agilent.com/en/product/software-informatics/mass-spectrometry-software/data-analysis
https://www.agilent.com/en/product/software-informatics/mass-spectrometry-software/data-analysis
https://www.matrixscience.com/server.html
https://www.maxquant.org/
https://proteinmetrics.com/byos/
https://www.proteomesoftware.com/products/scaffold-5
https://www.proteomesoftware.com/products/scaffold-5
https://www.nesvilab.org/software.html
https://www.nesvilab.org/software.html
https://ftp.ncbi.nlm.nih.gov/pub/lewisg/omssa/
https://ftp.ncbi.nlm.nih.gov/pub/lewisg/omssa/
https://ionsource.com/functional_reviews/Phenyx/phenyx-web.htm
https://ionsource.com/functional_reviews/Phenyx/phenyx-web.htm
https://www.bioinfor.com/
https://prospector.ucsf.edu/prospector/mshome.htm
https://prospector.ucsf.edu/prospector/mshome.htm
http://www.thegpm.org/TANDEM/index.html
http://www.thegpm.org/TANDEM/index.html
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ABSciex, Waters, Bruker and Agilent) and 10 public 
available search tools such as MaxQuant and Mascot 
etc.. The search engines and software tools specifically 
for DIA proteomics datasets were extensively described 
in a recent review paper (Zhang et al. 2020a). To properly 
interpret the protein identification in particularly large 
shotgun proteomics dataset against a large database, it is 
necessary to have a reliable estimate of the false discov-
ery rate (FDR), which is a measure of the percentage of 
putative protein identifications that are likely to be false. 
Almost all database search algorithms have integrated a 
target/decoy strategy for determining the FDR with Ben-
jamini–Hochberg procedure. Even with the high quality 
of MS and MS/MS spectra acquired by high mass accu-
racy/resolution instruments, it is necessary to set up an 
FDR threshold in effectively controlling the number of 
false positives in proteomic data (Choi and Nesvizhskii 
2008).

The diversity in data-analysis strategies from dif-
ferent types of mass spectrometers including various 
outputs leads to big challenges for the computational 
analysis of MS data that often leads to substantial differ-
ences between results obtained with different software 
tools. Therefore, some “3rd party” software tools were 
developed enabling analysis of raw data files from mul-
tiple vendors’ platforms to address some of these chal-
lenges. Among them, MASCOT (Perkins et  al. 1999) 
and MaxQuant/Andromeda (Cox and Mann 2008) are 
the most widely used database searching tools for large-
scale proteomics data. Mascot used an additional Dis-
tiller algorithm for label-free proteomics. The universal 
free software, MaxQuant using its own Andromeda 
search engine for peptide identification (Cox et al. 2011; 
Valikangas et  al. 2018) is applicable for mostly label-
free and labeled quantifications from high resolution 
data files, OpenMS, an open-source software platform 
is another tool providing a highly flexible and profes-
sional software environment equally suited for end users 
(Rost et al. 2016). Peptide identifications were performed 
within PEAKS software, another vendor-neutral tool also 
using its own search engine PEAKS DB combined with 
PEAKS de novo sequencing (Zhang et al. 2012). An addi-
tional Peaks Q module allows for relative protein abun-
dance changes across a set of samples simultaneously. 
For quantitative proteomics, due to different strategies or 
workflows used for data acquisition, more suitable tools 
were developed, such as PyQuant and SILVER for stable 
isotope labeling quantification, RIPPER and LFQuant for 
label-free quantification (Chang et al. 2014; Mitchell et al. 
2016; Van Riper et al. 2016). Most recently, another effi-
cient quantitative software PANDA was developed that 
supports both label free and labeled quantitation with 

existing peptide identification tools and accurate quanti-
tation (Chang et al. 2019).

Following data processing, database search and sta-
tistical analysis for discovery of candidate proteins and/
or their modifications or interacting complexes, further 
bioinformatics analyses are required for functional anno-
tation of those protein candidates. The most widely used 
functional annotation is ‘Gene Ontology’ (GO) having 
three separate GO terms as biological process, cellular 
component, and molecular function respectively, along 
with pathway enrichment analysis. A biological pathway 
is a series of reactions within the cell that exert a spe-
cific biological function. The proteins that are directly 
involved in reactions plus those that regulates the path-
ways belong to pathway databases. Some resources and 
databases available for the protein pathways such as 
KEGG, Ingenuity and Pathway Knowledge Base Reac-
tome are the most often used pathway databases with 
a comprehensive data for protein metabolism, sign-
aling and interactions. Perhaps the best-known soft-
ware for automated functional annotation pipeline is 
BLAST2GO (Conesa and Gotz 2008) that also incorpo-
rates InterProScan for protein family classification and 
KEGG data. In functional analysis involved in cellular 
signaling, plant phosphorylation site databases includ-
ing PhosPhAt (Durek et  al. 2010) for Arabidopsis, Plant 
Protein Phosphorylation DataBase (P3DB) (Gao et  al. 
2009) for 45 plant species (https://​www.​p3db.​org/​home) 
and PHOSIDA (Gnad et  al. 2011) can be used for pre-
dicting phosphorylation sites with an average predicting 
accuracy of 82.4% for pSer, 78.6% for pThr, and 89.0% for 
predicting pTyr by PlantPhos tool (Lee et  al. 2011). For 
protein complex studies, STRING is not only a widely 
used database with wealthy protein interaction data, but 
also it connects to various other resources for literature 
mining. Protein networks can be acquired based on the 
list of proteins/genes provided and the available interac-
tions using the STRING database (https://​string-​db.​org/). 
In addition, Biological General Repository for Interac-
tion Datasets (BioGRID) contains a large collection of 
protein–protein interactions for all major model organ-
ism species and humans (Chatr-Aryamontri et al. 2017). 
Another popular tool is Skyline, an open source software 
developed for targeted proteomics data analysis (Pino 
et al. 2020) over the past decade, but recently it becomes 
available for targeted metabolomics data analysis (Adams 
et  al. 2020). Notably, Skyline enables to support almost 
all of data analysis workflows such as SRM/MRM, PRM, 
DIA and targeted DDA.

https://www.p3db.org/home
https://string-db.org/


Page 11 of 38Yan et al. Molecular Horticulture            (2022) 2:17 	

Proteomic applications in plant research
Mechanistic understanding of plant stress tolerance
Plants are constantly affected by abiotic and biotic 
stresses during growth, development and adaptation to 
their environment. Plant proteins and metabolites play 
an important role in the maintenance of cellular homeo-
stasis, and regulate physiological changes to better adapt 
to prevailing environmental stresses. The plant immune 
system responds to biotic stress as a complex system 
with interactions and crosstalk between multiple signal-
ing pathways characterized by various signaling proteins 
and with a diverse set of stress-related proteins. There-
fore, protein profiling under various stress conditions 
has been extensively investigated (Kosova et al. 2018; Liu 
et  al. 2019). Quantitative proteomics provides compre-
hensive analysis of proteins allowing for the identification 
of key metabolic pathways affected by biotic or abiotic 
stress. iTRAQ labeling in proteomics enables to analyze 
and quantify up to eight phenotypes with high resolution 
(Pierce et  al. 2008), and is widely used in model plants 
such as Arabidopsis (Lan et al. 2011) and rice (Wang et al. 
2014b) but also has provided a platform to profile and 
understand the non-model species through comparative 
proteomics (Yang et al. 2011; Zhou et al. 2016a). We are 
one of the earlier groups applying iTRAQ-based quanti-
tative proteomics to investigate the temporal responses 
of plantain (Musa spp. Dajiao; ABB Group) proteome to 
identify the proteins related to the cold stress as Dajiao 
has superior cold tolerance compared with Cavendish 
Banana (Musa spp. Cavendish; AAA Group), an impor-
tant tropical fruit with high economic value (Yang et al. 
2012). The global proteome results suggest that an 
increase in antioxidant capacity via adapted ROS scav-
enging capability, reduced production of ROS and lipid 
peroxidation contributes to molecular mechanisms for 
the increased cold tolerance in plantain. Proteomic pro-
filing and identification of some membrane proteins has 
great potential value for developing cold tolerant banana 
cultivars. Further iTRAQ analysis of the membrane pro-
teomes of both Daojiao and Cavendish Banana under 
cold stress showed membrane-bound proteins such 
as peroxidases and aquaporins that were consistently 
induced at an early stage of cold stress (He et al. 2018). 
After cross-verification by qRT-PCR and MRM-targeted 
quantitation, and fluorescent-based subcellular localiza-
tion analysis, the authors concluded that 2 peroxidases, 
and 5 aquaporins are mainly involved in decreased lipid 
peroxidation and maintaining leaf cell water potential, 
which appear the key cellular adaptations contributing to 
the cold tolerance of Dajiao (He et al. 2018). These prot-
eomics findings provided a good complement to the tran-
scriptomics datasets for Dajiao’s high cold tolerance and 
its mechanisms (Yang et al. 2015). Meanwhile, a similar 

iTRAQ approach was used for discovery of the key ergos-
terol biosynthesis pathway to the conidial germination of 
the soilborne fungus Fusarium oxysporum f. sp. cubense 
tropical race 4 (Foc TR4), a most important lethal disease 
of Cavendish banana (Deng et al. 2015). This finding led 
to the successful development of transgenic bananas with 
superior resistance by host-induced gene silencing of two 
ergosterol biosynthesis genes (ERG6/ERG11) in Foc TR4 
(Dou et al. 2020), which lays the groundwork for disease-
resistance breeding in bananas and possible other crops.

Since poor correlation is often found between gene 
expression levels and protein abundances in organ-
isms under abiotic and biotic stresses, proteomics has 
thus become the preferable strategy to identify underly-
ing key factors and metabolic pathways (Feussner and 
Polle 2015), which is proven as an effective approach to 
identify candidate proteins in response to cold stress in 
plant species (Zhang et  al. 2016; Gao et  al. 2019). Jiang 
et  al. conducted a TMT10plex-based global proteome 
analysis for the leaves of Citrus junos seedling under the 
cold stress. These authors identified over 400 proteins 
accumulated in seeding leaves that are mainly related 
to the starch and sucrose metabolism as well as second-
ary metabolism. After physiological analysis, the authors 
propose that enhanced sugar and secondary metabolisms 
are the potential factors underlying the response of cit-
rus rootstock to cold stress (Jiang et al. 2021). Qin et.al. 
performed root proteome analysis by the TMT-based 
quantitative methods for the characterization of pro-
teins in rapeseed to identify the mechanisms underly-
ing rapeseed root adaptions to nitrogen deficiency (Qin 
et al. 2019). Proteins involved in cell wall organization or 
biogenesis were observed in high abundance, while most 
identified peroxidases were reduced in the N-deficient 
roots. Peroxidase activities were found decreased, which 
might promote root elongation while lowering the solid-
ity of N-deficient roots. In recent plant proteomics analy-
sis, LFQ approach particularly based on DIA method 
has been increasingly used for global quantitative profil-
ing that provides insights into many processes like stress 
response and tolerance, nutrient sensing and develop-
ment. Several proteomic studies have reported in-depth 
identification of differentially expressed transcription 
factors responsible for the development of fruits or other 
organs of tissues at various stages of development. One 
such study was performed using DIA for two winter 
rapeseed cultivars, one with cold tolerance and another 
with cold sensitive, and these authors discovered that 
the cold tolerance is related to reactive oxygen species 
(ROS) scavenging, possibly through metabolic pathways 
including flavonoid and ubiquinone biosynthesis, and 
other terpenoid-quinone biosynthesis (Mi et al. 2021). Li 
et  al. conducted a global proteomics analysis for Morus 
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alba leaves under high level ultraviolet-B (UV-B) radia-
tion and dark incubation (UVD) by SWATH-based DIA 
quantitative analysis. Other than significantly increased 
photorespiration in UVB group and phenolic compounds 
in UVD group, the abundances of proteins involved in 
the ubiquitin-proteasome system (UPS) and antioxida-
tive enzyme activities were significantly increased in both 
UVB and UVD groups, suggesting UPS related proteins 
participated in the resistance to UV-B radiation through 
abscisic acid (ABA) signaling and protein degradation 
(Li et  al. 2022b). Another DIA-based LFQ investigation 
of the global proteomes of WT tomato fruit and its cd2 
mutant was conducted to identify tomato proteins regu-
lated by the CUTIN DEFICIENT2 transcription factor 
and involved in cutin biosynthesis (Martin et al. 2016).

Quantitative proteomics for global PTM analysis is 
a fast-growing field that provides new insights into the 
regulatory roles of protein PTMs in cellular metabolic 
networks and has been widely used for probing stress 
tolerance in plants (Liu et al. 2019). Protein phosphoryla-
tion is an important signaling mechanism underlying the 
plant response to biotic and abiotic stress (Rampitsch 
2017; Liu et  al. 2019). Most studies in plants have been 
focused on protein kinases and identification of the 
phosphorylated substrates. For example, many plant 
kinases are activated and positively regulate plant frost 
tolerance at the post-translational level. The mitogen-
activated protein kinases (MAPK) constitute one of the 
most important signaling mechanisms in plants, and 
plays essential roles in enhanced frost tolerance (Furuya 
et  al. 2013; Gao et  al. 2017). In a TMT-based compara-
tive phosphoproteomics analysis of Daojiao and Caven-
dish bananas under cold stress, the phosphorylation level 
of Thr31 on MAPK kinase 2 (MKK2) was increased sig-
nificantly in the cold-tolerant Dajiao cultivar along with 
decreased MKK2 abundance for a time course of cold 
stress. Meanwhile, no detectable  T31 phosphorylation 
with increased abundance of MKK2 protein was found 
in the cold-sensitive cultivar, Cavendish (Gao et al. 2017). 
These findings provide new evidence that the signaling 
pathway of cellular MKK2 phosphorylation is associated 
with the molecular mechanisms of high tolerance to cold 
stress in Dajiao. Tan et  al. reported a parallel proteome 
and phospoproteome profiling of Arabidopsis seedlings 
under short-time cold stress using a DIA-LFQ analysis. 
These authors found a rapid (within 2 h of cold stress) 
and broad change of phosphorylated peptides from 
>1200 proteins that includes >140 kinases, >40 transcrip-
tional factors and >40 E3 ligases. Those early response 
proteins to cold stress were linked to phospholipid sign-
aling, cytoskeleton reorganization, calcium signaling, and 
MAPK cascades (Tan et al. 2021). In the plant target of 
rapamycin (TOR) kinase, a conserved serine/threonine 

protein kinase was found to play an essential role in 
maintaining cellular homeostasis. A combined quanti-
tative phosphoproteomics analysis involving a targeted 
TOR complex in Arabidopsis thaliana has been recently 
reported to not only detect TOR-regulated phosphopro-
teins linked to the TOR signaling network but also ena-
bled the identification of candidate TOR substrates (Van 
Leene et al. 2019). Phosphorylation is not only responsi-
ble for many biological processes in plants, but also often 
functions in coordination with other PTMs, resulting in 
crosstalk between PTMs on the same protein. O-Glc-
NAcylation and phosphorylation are examples that occur 
at the same amino acid sites/residues and are involved in 
the regulation of several cellular processes such as tran-
scription, cell signaling, hormone sensing and others (van 
der Laarse et al. 2018).

Signaling pathways exploration by protein interactomics
Mapping protein-protein interaction (PPI) networks and 
their dynamics is fundamental in understanding protein 
function and signaling transduction in cellular activities. 
Arabidopsis thaliana is the well-studied model plant for 
PPI with 95,382 PPIs being published for 12,617 proteins 
(approximately 46% of Arabidopsis genes coding for pro-
teins) and deposited in databases being used as the basis 
for a Cytoscape network (Yilmaz et  al. 2022). AP-MS is 
one of the popular approaches to study many aspects 
of plant cellular processes including plant growth and 
development. Nee et  al. used an AP-MS approach for 
uncovering the role of GERMINATION 1 (DOG1) and 
its regulatory mechanisms underlying Arabidopsis seed 
germination. The GFP tagged DELAY OF GERMINA-
TION 1 (DOG1) transgenic lines were constructed and 
used for IP pulldown of DOG1 interacting complexes of 
native seed protein extracts that were subjected to sub-
sequent protein identifications by LFQ-MS analysis (Nee 
et  al. 2017). Four phosphatases: AHG1, AHG3, RDO5 
and PDF1 were found among the proteins that intact with 
DOG1 in seeds while two of them: AHG1 and AHG3 
are Clade A type 2C protein phosphatases (PP2Cs) and 
essential for DOG1-dependent control of seed dormancy. 
In combination with genetic analysis, the authors found 
that the interaction of DOG1 with AHG1 and AHG3 can 
negatively affect the function of these PP2Cs rather than 
that these phosphatases control DOG1 activity by phos-
phorylation (Nee et al. 2017).

In planta chemical cross-linking MS (XL-MS) has 
emerged as an alternative approach for mapping PPIs 
and studying protein complexes (Zhu et  al. 2016a; Liu 
et al. 2018). Liu et al. developed a chemical cross-linker, 
azide-tag-modified disuccinimidyl pimelate that was 
used in planta for chemical cross-linking within Arabi-
dopsis tissue, followed by streptavidin enrichment of the 
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biotin-tagged cross-linked peptides, LC-MS/MS analysis, 
and the use of specialized software (ECL2 and SQUA-
D) to identify and quantify cross-linked peptides (Liu 
et al. 2018). A total of 354 unique cross-linked peptides 
were identified with 61 representing the inter-protein 
crosslinks including a conserved protein family: prohib-
itins (PHBs) that are related to cell proliferation, saline 
and oxidative stress (Wang et  al. 2021a). The PHB3–
PHB6 protein interaction was confirmed by Co-IP and 
super-resolution microscopy experiments (Liu et  al. 
2018). Recently, a MS-cleavable cross linkers DSSO has 
been applied for intermolecular and intramolecular 
interactions of the Arabidopsis plasma membrane proton 
pump (H+-ATPase), an essential enzyme for cell surface 
energetics, regulation of cell elongation and response to 
abiotic and biotic stimuli (Nguyen et al. 2020). The strep-
HA-tagged Arabidopsis H+-ATPase 2 (AHA2) expressed 
in yeast under both N14 and N15 media was purified on 
streptactin resin prior to DSSO crosslinking reaction, and 
the C-terminal domain of AHA2 was found to be exten-
sively crosslinked to other domains in intramolecular 
monomer as well as intermolecular interactions through 
observed mixed-isotope cross-linking pairs. The results 
not only suggest the regulatory role of C-terminal domain 
dynamic interaction in the catalytic activity of AHA2, 
but also support an Interface structure between mono-
mers of AHA2 based on many intermolecular crosslinks 
found in the cytoplasmic domain (Nguyen et  al. 2020). 
Another recent development for plant PPI application 
is the combination of crosslinking and tandem affinity 
purification coupled to MS (XL–TAP–MS) to address the 
big analytical challenge for detection of low-abundance 
protein complexes and in  vivo protein–protein interac-
tions in complex biological samples. Leissing et al. used 
an in  vivo-biotinylated protein domain flanked by two 
hexahistidine sequences for affinity isolation of formalde-
hyde–crosslinked protein complexes of the MKK2-MPK4 
signaling module in Arabidopsis (Leissing et  al. 2021). 
Out of 107 proteins identified as putative interactors of 
the MKK2–MPK4 module, 9 are interacted specifically 
with MKK2, 47 with MPK4, and 51 interactors are co-
purified with both bait proteins. More importantly, many 
of the module-interacting proteins are involved in abiotic 
stress signaling and various biotic responsive pathways in 
Arabidopsis (Leissing et al. 2021).

Functional characterization of cell‑specific proteins 
by single‑cell‑type proteomics
Studies conducted using standard bottom-up protocols 
generally involve the use of bulked tissue or organ sam-
ples containing uncharacterized mixtures of diverse and 
intermingled cell types, each with unique proteomes 
optimized for specific sets of biological functions. Studies 

of these bulked samples capture only the weighted pop-
ulation mean of protein expression and obscure impor-
tant information concerning intercellular heterogeneity 
as well as all spatial effects. It is becoming increasingly 
clear that a very granular sampling strategy is required to 
provide the high spatial resolution and cell specific prot-
eomic information required to facilitate the disambigua-
tion of the biological complexity that underlie a plants 
response to biological stimuli.

Considerations of this kind have given rise to a growing 
effort to develop methods to carry out comprehensive, 
quantitative proteomics studies on single or small num-
bers of cells and make these accessible to all research-
ers. While other non-MS centric methods have been 
utilized (Seyfferth et al. 2021; Shaw et al. 2021; Cuperus 
2022), single cell proteomics by MS seems positioned 
to revolutionize our understanding of cellular functions 
and regulatory networks. In the past decade proteom-
ics workflows have been developed to capture samples 
consisting of small numbers of plant cells (hundreds to 
thousands) collected either by laser capture microdissec-
tion (LCM) or fluorescent activated cell sorting (FACS) 
and microfluidic nanodroplet-based sample preparation 
followed by nanoLC-MS/MS analysis (Balasubramanian 
et al. 2021).

Studies of this type are termed single-cell-type experi-
ments as the specimens analyzed consist of a highly 
reduced (but still relatively large) number of cells of a 
specific type (i.e., epithelial, endothelial, cortical etc.). 
The advantages of this approach are that it preserves the 
information concerning the distinct nature of the sub-
ject cell-type’s proteome. However, they do not produce 
high-resolution spatial information nor do they provide 
information concerning cell-to-cell variation. Never-
theless, this approach has proven successful in certain 
cases including reproductive cells (pollen grains and egg 
cells), mesophyll cells, and specialized epidermic cells 
(root hairs, guard cells and trichomes) (Dai and Chen 
2012). Zhu et  al. reported an application of single-cell-
type proteomics using LCM in tomato seedlings grown 
in hydroponic tanks containing a 14.5 μM Al3+ solution 
to simulate the effects of aluminum toxicity in soil (Zhu 
et  al. 2016b). Epidermal and cortical cells (5,000–7,000 
cells per tissue type) of roots in 10-day old seedlings were 
collected by LCM for subsequent. protein extraction, 
in-gel tryptic digestion and nanoLC-MS/MS analysis. In 
this study, they found that a significant portion of each 
proteome contain proteins unique to the individual cell 
types, and identified several important proteins related 
to Al-induced morphological characteristics of roots 
that were not found in studies of the bulked tissue (Zhu 
et al. 2016b). The same groups expanded their studies to 
include heat-induced proteomes in meiotic pollen cells of 
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tomato (Li et  al. 2018b; Li et  al. 2022a) and Al-induced 
proteomes of tomato root epidermal and outer cortical 
cells (Yang et  al. 2020; Potts et  al. 2022) by integrating 
LCM-based single-cell-type approach with TMT labeled 
quantitative proteomics. As shown in Fig. 3A, Al-treated 
outer layer cells (Type I) and interior tissues (Type II) 
along with control outer layer cells (Type III) in the apical 
meristem/cell division regions of tomato root-tips were 
collected by LCM for TMT10-plex quantitative proteom-
ics analysis. Out of 6,000 quantified proteins, 313 were 
found to differ in abundance between the different cell 
types compared. These differential abundance proteins 
(DAPs) were used to categorize them as Al-responsive 
proteins (Potts et al. 2022). Figure 3B shows the volcano 
plot and heatmap were created between type I and type 
II cellular proteomes used to designate the DAPs. The 
complete set of DAPs identified were used to construct 
an association network in STRING (https://​string-​db.​
org/) using the tomato (Solanum lycopersicum) database 
(Fig. 3C). A total of 17 protein clusters and interactions 
were found, one of which is characterized as signifi-
cant due to the increases in MATE and anti-oxidation 

proteins in the outer layer cells compared to those found 
in the interior cells (Potts et al. 2022). This data demon-
strates that the single-cell-type approach is a useful strat-
egy for the specific case of identifying novel Al tolerance 
mechanisms in plants, but also for the more general case 
of proteomics analysis of spatially resolved cells in com-
plex tissues (Potts et al. 2022).

Recent advances in protoplasting and sequencing tech-
nologies with single-cell whole-genome amplification 
and single-cell RNA sequencing have allowed for direct 
single-cell genomic, epigenomic and transcriptomic 
studies in plants (Luo et  al. 2020; Shaw et  al. 2021). In 
the furtherance of the single-cell system biology strat-
egy, this progress has stimulated efforts to develop true 
single-cell proteomics methods (Kelly 2020; Labib and 
Kelley 2020) despite the considerable technical chal-
lenges that remain, such as low sensitivity and through-
put that apply to all single-cell proteomics applications, 
independent of phylogenetic concerns. Furthermore, 
plants bring additional challenges associated with the 
cell wall. As with all proteomic applications, the dynamic 
range of protein abundance can vary from a single copy 

Fig. 3  Identification of Al-induced proteomes in outer layer cells and interior of tomato root-tips. A TMT comparative proteomics analysis of 
differentially abundance proteins (DAPs) on tomato root-tips samples using laser capture microdissection (LCM); B Heatmap analysis based on 
ANOVA and Volcano plot for the DAPs between type I and type II tissues; C Protein network analysis by STRING (https://​string-​db.​org/) for the DAPs 
found between type I and type II tissues

https://string-db.org/
https://string-db.org/
https://string-db.org/
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to a few million copies per cell. This restricts detection 
to the most abundant proteins (Labib and Kelley 2020). 
Since the initial reports in 2018 on profiling hundreds of 
proteins from single mammalian cells (Budnik et al. 2018; 
Zhu et  al. 2018b), the field has advanced steadily, albeit 
mostly in animal systems. Over 1,000 protein groups can 
now be reliably quantified by label-free analyses (Cong 
et  al. 2020; Brunner et  al. 2022) from single HeLa cells, 
and by isobaric labeling workflows (Dou et al. 2019; Tsai 
et  al. 2020; Specht et  al. 2021) from other mammalian 
cells. These successes were attributed to the recent inno-
vations including an automated platform (nanoPOTs) for 
miniaturized sample preparation to reduce sample loss 
(Kelly 2020; Liang et al. 2021b), optimized gradients with 
very low flow-rates (<100 nL/min) and the introduction 
of next generation ion mobility MS sources which pro-
vides a >10-fold improvement sensitivity for peptides 
(Cong et  al. 2020; Brunner et  al. 2022). The develop-
ment of a TMT-based multiplexed single-cell proteomics 
strategy incorporating a carrier proteome into one of the 
quantitation channels, enhances sensitivity, and improves 
throughput through multiplexing (Budnik et  al. 2018; 
Dou et  al. 2019). With the recent improvements allow-
ing for the direct deposition of single cells on 96/384-
well plates after cell sorting and integration of automated 
sample handling using the Minimal ProteOmic sample 
Preparation (mPOP) method, Specht et al. have reported 
quantifying >3,000 proteins from a single-cell proteomes 
using 1,490 single monocytes and macrophages in just 
10-days of instrument time employing both TMT11-plex 
and TMT16-plex reagents for two biological replicate 
single-cell samples (Specht et al. 2021). It should be noted 
that the use of higher concentrations of carrier in TMT 
has been shown to compromise quantitation accuracy in 
the single-cell channels. To overcome this issue, optimal 
carrier proteome amounts and optimized MS instrument 
settings are required.

In addition, mass spectrometry imaging (MSI) tech-
nology has been incorporated with LCM for spatially 
resolved proteomics study. Compared to smaller metab-
olites in plant tissues, MSI for plant peptides and pro-
teins possesses more challenges due to larger molecular 
weights with decreased ionization efficiency (Bjarnholt 
et  al. 2014). For example, Cavatorta et  al. demonstrated 
the localization of the major peach allergen, Prup3, in 
three different varieties of peach (Cavatorta et  al. 2009) 
while Prup3 was present only in the outer skin of peaches 
that give allergic sensitivities to peach peels. Bencivenni 
et  al. reported that non-specific lipid-transfer proteins, 
are one of the major human allergens in various plants 
that are located in tomato seeds instead of peels and 
pulps (Bencivenni et  al. 2014). Gemperline et  al. found 
that different distributions of endogenous peptides and 

protein fragments can be observed between seedlings 
and mature of M. truncatula (Gemperline et al. 2016b).

Emerging MS based metabolomics techniques
Sample preparation and separation technologies
Extraction
Sample preparation is an essential step in plant metabo-
lomics workflow (Fig.  4). An efficient extraction pro-
cedure for endogenous metabolites is the most critical 
step for achieving high quality plant metabolomics data. 
Notably, lipidomics analysis is not included in this sec-
tion. The rapid turnover rate of metabolites, both pri-
mary and secondary metabolites, can occur during 
the extraction process (Heise et  al. 2014; Rampler et  al. 
2021). Therefore, simple, rapid, and reproducible extrac-
tion methods are required for sample preparation. Due 
to the difficulties associated with extraction through 
cell wall, it is important to grind the plant material to 
a homogeneous powder before extraction. To achieve 
this, several strategies, such as a vibration mill (Jons-
son et  al. 2004), ball mill (Weckwerth et  al. 2004), and 
Ultra Turrax (Roessner et al. 2000), have been utilized to 
disrupt cell walls and homogenize the sample. It is rec-
ommended that these homogenization procedures be 
performed in liquid nitrogen in order to avoid degrada-
tion. After homogenization, several selective metabo-
lite extraction methods, including microwave-assisted 
extraction (Teo et al. 2013; Gemperline et al. 2016b; Wei 
et  al. 2016) , ultrasound-assisted extraction (Chemat 
et al. 2017), high voltage electric discharge extraction (Li 
et  al. 2019), supercritical fluid extraction (SFE) (Gallego 
et al. 2019), enzyme-assisted extraction (Puri et al. 2012), 
and solid-phase extraction (SPE) (Reyes-Garcés and 
Gionfriddo 2019) are commonly used in combination 
or sequentially. Notably, given the fact that SFE affords 
various advantages such as chemically stable, environ-
mentally friendly, low toxicity, and not flammable, it has 
been chosen as a good extraction strategy for volatile 
compounds (e.g., terpenes and aromatic compounds) 
from plant samples (Naz et  al. 2017). In recent years, a 
wide range of novel sorbents that are selective for the 
extraction of metabolites have been developed (Li et  al. 
2018c; Faraji et  al. 2019; Rocío-Bautista and Termopoli 
2019; Li et  al. 2020a), such as molecularly imprinted 
polymers (MIPs), multiwalled carbon nanotubes (MWC-
NTs), metal-organic frameworks (MOFs), and covalent 
organic frameworks (COFs). More specifically, Li et  al. 
prepared the cellulose magnetic molecularly imprinted 
polymer micro-spheres (CMMIPs) for efficient extrac-
tion and determination of plant hormone (e.g., indole-
3-acetic acid) in plant tissues (Li et  al. 2018d). Alireza 
et al. developed a MWCNT-polyaniline nanocomposite-
coated platinized stainless-steel fiber for the extraction 
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of thymol and carvacrol in medicinal plants (Ghiasvand 
et al. 2015). Liu et al. developed a zirconium (IV)-based 
MOF (UIO-67) as efficient sorbent for enrichment of 
eight plant growth regulators in fruit samples (Liu et al. 
2016a). Recently, Li et al. reported a novel magnetic COF 
nanomaterial (Fe3O4@COF(TpDA)) as an adsorbent 

for SPE of plant growth regulators from fruits and veg-
etables (Li et al. 2020b). Taken together, these emerging 
nanostructured materials result in a reduction in sorbent 
amounts and higher extraction recoveries, and automa-
tion of SPE methods might facilitate the development 
of greener sample preparation methods. In addition, 

Fig. 4  A general workflow for MS-based plant metabolomics study, including experimental design, sample preparation, metabolomic data 
acquisition, and metabolomic data analysis
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solid-phase microextraction (SPME) has been currently 
re-explored for metabolomics, which is a non-exhaustive 
extraction way particularly attractive for time-resolved 
or spatially metabolomics. Recently, the developments 
and applications of SPME as a sample preparation tool 
for GC-MS- and LC-MS-based metabolomics have been 
demonstrated and summarized (Reyes-Garcés and Gion-
friddo 2019).

Separation method
As shown in Fig.  4, gas chromatography (GC), LC, and 
capillary electrophoresis (CE) are the common metabo-
lite separation methods, which can be tandem with MS 
for metabolomics study. Since 2000, GC-MS has become 
a central platform in targeted metabolomics for vola-
tile and nonpolar metabolites, which are major classes 
of primary and secondary compounds in plant science 
(Roessner et al. 2000). Although GC-MS has significantly 
advanced, two-dimensional GC (2D-GC) demonstrates 
superior chromatographic capabilities, including resolv-
ing power, peak capacity, and sensitivity, especially for 
the separation of low molecular weight (Balasubrama-
nian et  al. 2021) plant metabolites in complex samples 
(Tranchida et  al. 2016). Recently, Gavin Sacks’ group 
developed solid-phase mesh-enhanced sorption from 
headspace (SPMESH) coupled to GC–MS for the quan-
titation of linalool and 3-isobutyl-2-methoxypyrazine in 
real grape samples (Jastrzembski and Sacks 2016). This 
SPMESH strategy afforded greater loading capability and 
was more cost-effective.

However, due to involvement of derivatization steps 
and other challenges in GC-MS, LC-MS has become 
the most valuable analytical tool for the analysis of polar 
and nonpolar metabolites with greater selectively and 
reduced ion-suppression and matrix effects. For exam-
ple, Gray et  al. demonstrated that a compact 1 mm i.d. 
column was able to reduce solvent consumption by 75% 
and increased sensitivity by 2-3-fold compared to the 
standard 2.1 mm i.d. column (Gray et al. 2015). Coelution 
and resistance to retention of low polarity compounds 
makes RPLC as a more suitable technique for separation. 
Thus, mobile-phase modifiers, including formic acid, 
ammonium formate/acetate, or ammonium hydroxide 
can be used (Cajka and Fiehn 2014). Tufi et al. found that 
the zwitterionic phase based on silica gel columns pro-
vides the optimal performance compared to four others 
commercial HILIC packing materials (Tufi et  al. 2015). 
Currently, multidimensional liquid chromatography is 
emerging to resolve this issue, which will be summarized 
in the below subsection.

CE-MS has also proven to be a promising platform 
in metabolomics. For the separation of cations and ani-
ons, bare capillaries are typically used for CE-MS with 

conditions of pH < 2 and surface coated fused-silica is 
used when pH > 8. Tanaka et al. revealed that polymer-
based fused-silica capillaries can be used to better control 
the EOF and lower ion adsorption (Tanaka et  al. 2008). 
Additionally, a modification to the liquid junction in 
CE-MS interfaces has recently been conducted based on 
sheath flow or sheathless electrospray designs. Recently, 
a new liquid junction-based electrospray interface has 
been developed for automated CE-MS analysis through 
computer modeling of transport conditions (Krenkova 
et  al. 2019). Using this liquid junction interface, small 
peptides, proteins and oligosaccharides can be well sepa-
rated. Beyond that, recent decades have witnessed great 
improvements of CE-MS in single-cell and subcellular 
analyses due to its compatibility with low volume sample 
requirements (DeLaney et al. 2019; Kristoff et al. 2020). 
Williams et  al. used a CE-MS method for metabolic 
profiling of amino acids of Medicago truncatula liquid 
suspension cell cultures in response to stress (Williams 
et al. 2007). Huang et al. developed an online single-cell 
CE-MS platform for single-cell metabolomics from a 
red onion (Allium cepa) cell, and hundreds of metabo-
lites were successfully separated and putatively identified 
(Huang et al. 2021). Taken together, these results strongly 
suggest that CE-MS is expected to be more commonly 
used in single-cell metabolomics research.

In addition, super critical fluid chromatography (SFC), 
which utilizes liquid CO2 as a solvent, is a complemen-
tary method to GC, LC and CE. The review papers have 
described the advances in GC, LC, and SFC methods to 
improve the metabolome (Haggarty and Burgess 2017), 
and compared different LC and SFC strategies in terms of 
efficiency versus throughout, showing the performance 
from each method to readers (Fekete et  al. 2015). With 
the development of new robust column and instrumenta-
tion, SFC method has been improved and applied in tar-
geted metabolomics (West et al. 2016).

Combination of orthogonal chromatography techniques
Another way to reduce the coelution of metabolites 
and improved separation efficiency is to combine two 
or more separation techniques in a single analysis, such 
as serial combination of two different column (Alvarez-
Segura et  al. 2016), two-dimensional LC (2D-LC) (Stoll 
et  al. 2007; Sandra and Sandra 2013), 2D-GC (Koure-
menos et  al. 2010), and 2D-SFC (Zhou et  al. 2014). 
Among them, 2D-LC has been widely applied in untar-
geted metabolomics studies. An online 2D-LC can pro-
vide high-throughput and automated analysis, but short 
separation time might compromise the chromatographic 
resolution of the second LC separation (Holčapek et  al. 
2015). Xu’ s group recently established 2D-LC-MS and 
parallel column based 2D-LC (PC-2DLC)-MS approach 
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to simultaneously perform metabolomics and lipidom-
ics (Wang et  al. 2017; Lv et  al. 2020). Using orthogonal 
HILIC and RPLC chromatography with distinct retention 
mechanisms, HILIC × RPLC is capable of simultaneous 
separation and detection of hydrophilic and hydropho-
bic compounds in complex samples in a single injection, 
which significantly increases peak capacity and separa-
tion flux. For example, Wang et al. used stop-flow HILIC 
× RPLC to identify 372 lipids from 13 different classes 
of compounds in positive mode (Wang et  al. 2013b). 
Zhou et al. developed a HILIC × RPLC system to sepa-
rate a total of 896 peaks from G. jasminoides Ellis (GJE) 
and identify 16 active ingredients (Zhou et  al. 2016b). 
Dang et al. demonstrated an orthogonal 2D HILIC/RPLC 
system for the isolation of 18 flavonoids from S. tangu-
tica, which was quantitatively evaluated based on the 
construction of normalized 2D plots (Dang et  al. 2018). 
Specifically, normalized 2D plots were divided into 9×10 
bins, and distinct flavonoids with fractions 1–9 occupied 
55 bins. Navarro-Reig and his colleagues used an HILIC 
× RPLC system with chemometric tools to acquire a lipi-
domic assessment of the effect of arsenic pollution on 
rice (Oryza sativa L.) growth (Navarro-Reig et al. 2018). 
Lisa et  al. achieved fractionation of total lipid extracts 
of soya tissues into individual lipid classes using HILIC 
as the first separation dimension, followed by RPLC-MS 
separation and identification of individual species (Lísa 
et al. 2011).

Advanced MS technologies for metabolomics data 
acquisition
Untargeted metabolomics
Metabolomics has rapidly grown as the major method-
ologies for systems biology studies, driven by new devel-
opments in MS that provides high sensitivity and high 
throughput coverage of the metabolome. Untargeted 
metabolomics analysis involves identification of global 
metabolites having peak intensities in a mass chroma-
togram processed in an unbiased way. Ideally, the MS 
platform instrument should provide precise mass meas-
urements with superior mass accuracy and mass resolu-
tion for untargeted metabolomics (Treviño et  al. 2015). 
The lack of mass resolving power will undoubtedly lead 
to overlap of co-eluting isobaric metabolites and will 
result in false positive results. To this end, untargeted 
metabolomics studies have been dominated by the high-
resolution mass spectrometers, such as time-of-flight 
(TOF), Orbitrap, and Fourier transfer ion cyclotron reso-
nance (FT-ICR) mass analyzers, which greatly improve 
the chemical specificity and provide high confidence in 
analyte identification. However, some compromises must 
be considered in terms of desired detection sensitivity, 
dynamic linearity range, and acquisition rate. Up to date, 

the majority of published plant metabolomics studies use 
Orbitrap or TOF equipment considering coverage, selec-
tivity, and throughput (Maia et  al. 2021). Recently sev-
eral reviews covered well the topic of GC/LC-MS- and 
FT-ICR-based plant metabolomics studies (Alseekh et al. 
2021; Alvarez and Naldrett 2021; Maia et al. 2021; Perez 
de Souza et  al. 2021), so we will not cover too much in 
detail about the progress in this field over the past dec-
ade. In this section, we will focus on the newest techno-
logical advancements in untargeted metabolomics, such 
as DIA, IMS, fluxomics.

To achieve optimal analyte identification confidence, 
tandem MS is required to obtain characteristic frag-
ments. Among these techniques, classic DDA remains 
the standard for untargeted metabolomics. However, DIA 
is a rapidly emerging and robust method for improved 
coverage of low-abundance metabolites (Tsugawa et  al. 
2015; Li et  al. 2020c). Specifically, DIA provides more 
robust data than DDA acquisition technique because all 
fragment ions from all precursor ions are acquired simul-
taneously. Thus, DIA allows for increased chemical cov-
erage of metabolites and reduced identification artifacts. 
One issue to note is that the molecular identification with 
the DIA method can be compromised due to the decou-
pling of precursor ions and their fragments, which can be 
exacerbated when large mass windows or all-fragment-
ion mode are selected. Thus, these challenges promote 
the development of deconvolution algorithms software 
that matches precursor ions and fragment ions based on 
retention-time alignment (Tsugawa et al. 2015; Perez de 
Souza et  al. 2021). To better distinguish metabolites of 
interest from background contaminants (e.g., polyeth-
ylene glycol, polypropylene glycol, siloxanes) commonly 
found in LC-MS/MS and enhance the coverage of metab-
olome, the automated intelligent workflow AcquireX 
(Thermo Fisher) has been developed to differentiate 
metabolite signals (Cho et  al. 2021; Schwaiger-Haber 
et al. 2021). The AcquireX workflow enables which pre-
cursors to select for enhanced fragmentation (MS/MS or 
MSn) in real time by automated exclusion/inclusion list 
generation and updating in five consecutive LC-MS runs, 
allowing not only for background exclusion, but also for 
digging deeper into the low abundance metabolites.

For plant untargeted metabolomics, many factors still 
limit metabolite annotation. Ion mobility spectrom-
etry (IMS) has been proposed for improved identifica-
tion capabilities by providing an additional separation 
dimension within the millisecond time-window (Hof-
mann and Pagel 2017; Wu et al. 2021). To date, there are 
several available IMS platforms, such as traveling wave 
IMS, drift-time IMS, high field asymmetric waveform 
IMS, and trapped IMS, Open-loop IMS (González-Riano 
et al. 2020), which have been used with GC-/LC-MS for 
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untargeted metabolomics. Given that IMS enables the 
CCS measurement of a wide range of metabolites and 
protein complexes, four-dimensional (4D) information, 
including retention time, CCS value, accurate molecu-
lar mass, and MS/MS fragmentation, can be obtained 
simultaneously. This significant increases in improving 
the identification confidence and prediction of unknown 
molecular structures. Additionally, the incorporation of 
IMS offers improved separation of coeluting and isobaric 
compounds, lower background noise, and higher mass 
resolution (Szykuła et al. 2019). Specifically, Jia et al. used 
UPLC-IMS-QTOFMS to reveal the chemical diagnostic 
markers for the differentiation of three Panax species (P. 
ginseng, P. quinquefolius, and P. notoginseng), which are 
easily misidentified and widely consumed as healthcare 
products (Jia et  al. 2019). More than 162 compounds 
from fungicide-infected potato samples (S. tuberosum) 
were able to be distinguished by UPLC-IMS-QTOFMS 
due to its ability to produce confident compound anno-
tations from elemental composition determination, 
retention times, specific CCS-values, and MS fragment 
spectra (Claassen et  al. 2019). McCullagh et  al. adopted 
IMS coupled to MS for profiling 6-C and 8-C-glycosyl-
flavone isomer pairs in medicinal plants (e.g., Passiflora 
species)  (McCullagh et  al. 2019). Recently, Zhu’s group 
developed an ion mobility CCS atlas, AIICCS, to further 
improve annotation of both known and unknown metab-
olites acquired in IM-MS-based metabolomics (Zhou 
et al. 2020). Given the fact that CCS values are a unique 
physiochemical property of detected metabolites, this 
method will expand the chemical coverage and assess-
ment of annotated metabolites in metabolic pathways 
and biological processes (Li et al. 2021a).

Fluxomics, as a new untargeted metabolomics 
approach to monitor the dynamic changes of metabolites 
in metabolic pathways, thereby provides an overview of 
the global regulation network with regard to transcrip-
tional, translational, and metabolic processes (Cascante 
and Marin 2008). Fluxomics that combines 13C isotope 
or 15N labelling and computational approaches provides 
a deep insight into the correlation between genotype 
and metabolic phenotype. This technique also provides 
a measure of the flux through each reaction in the net-
work, which can be considered a direct measure of the 
phenotype (Heux et al. 2017). Several methods have been 
proposed to decipher complex plant metabolic path-
ways. One method, metabolic flux analysis (MFA), has 
been widely adopted for heterotrophic tissues that lie in a 
metabolic and isotopic steady state (Crown and Antonie-
wicz 2013; Salon et al. 2017). For systems in a metabolic 
steady state that are isotopically dynamic, isotopically 
non-stationary MFA (INST-MFA) has been developed 
to quantify flux variations, dynamically (Wiechert and 

Nöh 2013; Salon et al. 2017; Wieloch 2021). Flux balance 
analysis (FBA) was invented as a complementary tool for 
deciphering genome-scale metabolic models (Shi and 
Schwender 2016). Recently, a machine learning-based 
framework has been developed to circumvent computa-
tional limitations of traditional MFA algorithms, facili-
tating high-throughput phenotyping and advances of 
synthetic biology (Wu et al. 2016; Millard et al. 2021; Wu 
et  al. 2022). To date, fluxomics has been widely applied 
to determine exchange rates of a given element between 
various organs and nutrient use efficiency (Kichey et al. 
2007) at the plant level. Specifically, fluxomics applica-
tions in the assessment of C and N use have been con-
ducted in a range of plant species. 15N-based MFA 
methods have been applied in maize (Gallais et al. 2006), 
rice, wheat (Kichey et al. 2007), pea (Schiltz et al. 2005), 
and B. napus (Malagoli et  al. 2005). Recently, Ma et  al. 
and Xu et al. used 13C-labeling INST-MFA to estimate C 
fluxes in central metabolism during photosynthesis (Ma 
et al. 2014a; Xu et al. 2021). Cocuron et al. used isotope-
labeled fluxomics to compare the metabolism of two 
different maize lines through 13C-MFA (Cocuron et  al. 
2019). In addition, the labeling-based fluxomics strategy 
has been used to determine endogenous and exogenous 
N and S fluxes at the whole-plant level to evaluate nutri-
ent use efficiency (NUE) (Salon et al. 2014), as well as the 
N harvest index, nutrient uptake efficiency, and nutrient 
remobilization efficiency in Arabidopsis (Guiboileau et al. 
2012) and maize (Li et  al. 2015a) during development. 
MFA and INST-MFA are thus promising synergistic 
toolsets for uncovering the basis of C and energy conver-
sion efficiencies in plant systems (Chen and Shachar-Hill 
2012; Kruger and Ratcliffe 2021).

Targeted metabolomics
While untargeted metabolomics is devoted to maximiz-
ing coverage of metabolites, targeted metabolomics is 
concerned with the quantitative analysis or rapid pro-
filing of a very specific set of compounds using highly 
selective techniques. The standardization of chroma-
tographic conditions in GC together with reproduc-
ible spectral databases resulting from electron ionization 
results in a bias in favor of the use of GC-MS for tar-
geted applications. GC-MS methods provide quantita-
tive data for large-scale analysis of metabolites involved 
in central metabolism. Hence, GC-MS is the method of 
choice for targeted profiling and quantitation of various 
plant primary metabolites, with low MW, low polarity, 
and low boiling points. Chemical derivatization strategies 
are commonly required to improve ionization efficiency 
of non- or semi-volatile metabolites (e.g., nucleotides, 
fatty acids, and amino acids). Incomplete derivation not 
only affects the quantification of peaks, but increases the 
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spectral complexity. Therefore, two-dimensional GC has 
proven to be a robust method with improved separation 
capacity, peak resolution, and spectral reproducibility 
(Almstetter et al. 2012). Targeted GC-MS methods nor-
mally adopt specific conditions for known compounds, 
such as select ion monitoring (SIM) and multiple reaction 
monitoring (MRM). Recently, Xu’s group proposed the 
“quasi-targeted” SIM or MRM methods instead of untar-
geted full-scan (Zheng et  al. 2020). Yuan et  al. reported 
a widely targeted volatilomics method based on GC-MS 
using MRM to profile the volatilome of rice grains (Yuan 
et al. 2022). To improve the quantitative capability of tar-
geted metabolomics, use of adequate (isotope labeled) 
internal standards is common practice, which are ion-
ized under nearly identical conditions as the targeted 
metabolites of interest (Chen et  al. 2013). For targeted 
metabolic profiling and quantitation, triple quadrupole 
mass spectrometry (QqQ-MS) and quadrupole-linear ion 
trap mass spectrometry (QLIT-MS) are most widely used 
(Dettmer et  al. 2007). Both SIM and MRM represent 
routine operation modes for QqQ-MS and QLIT-MS, 
which provide richer structural information, and more 
precise quantification analysis. Recently, a high-coverage 
and quantitative LC-MS/MS method using both positive 
and negative-mode MRM was reported for targeted 206 

primary and secondary plant metabolites (Zheng et  al. 
2021). In past decades, LC-MS/MS for targeted metab-
olomics profiling and quantitation has been gaining the 
popularity for the broad application of plant metabo-
lites including plant hormones such as cytokinins (Hu 
et al. 2021b; Pino et al. 2022), salicylic acid and glycolytic 
metabolites (Wang et al. 2022; Yang et al. 2022).

Spatially resolved metabolomics
The ability to visualize metabolite distribution within 
plant tissues with high spatial resolution is crucial for a 
detailed understanding of the synthesis, accumulation, 
and cross-regulation of metabolites in plants (Gemper-
line et al. 2016a). Metabolomic analysis of bulked tissues 
focuses yield information concerning the mean concen-
trations in the bulked tissue which is of limited biologi-
cal value. Thus, mass spectrometry imaging (MSI) was 
developed that possesses the advantages of label-free, 
non-specific, and visualized detection, and simultaneous 
analysis of hundreds of compounds in a single analysis. 
MSI has recently proven to be a robust technique for 
characterizing the spatial distributions of a wide range 
of metabolites within plant tissues and single cells (Yin 
et  al. 2019; Meng et  al. 2020; Li et  al. 2021a; Samarah 
et  al. 2021). Several ion sources are available for plant 

Fig. 5  Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) as a molecular exploratory tool in plant science. A The 
dynamic spatial distribution of disaccharides, dopamine, and lysine within banana pulps at different postharvest ripening stage. Scale bar, 5 mm. B 
The dynamic spatial distribution of disaccharides, glucose-6-phosphate, and TAG (52:3) within maize kernels at different development stages. Scale 
bars, 2.5 mm
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MSI, such as matrix-assisted laser desorption ionization 
(MALDI), secondary ion mass spectrometry (Wang et al. 
2016), desorption electrospray ionization (Li et al. 2013), 
and laser ablation electrospray ionization (LAESI). The 
choice of ion source is dependent on metabolite species, 
its spatial resolution, the pressure regime, and scanning 
speed (Liang et al. 2016; Wang et al. 2020b). Among the 
available techniques, MALDI-MSI has been the most 
widely used technique for plant tissue imaging. As shown 
in Fig. 5 (unpublished data), we can observe the dynamic 
spatial distribution of disaccharides, dopamine, and 
lysine within banana pulps at different postharvest ripen-
ing stage, and the dynamic spatial distribution of disac-
charides, glucose-6-phosphate, and TAG (52:3) within 
maize kernels at different development stages using 
MALDI-MSI. Sample preparation is the most crucial step 
for MSI to provide high-quality ion images. Improper 
sample preparation can damage the original sample by 
altering the analyte distribution, and abundance and can 
therefore lead to degraded detection sensitivity and spa-
tial resolution (Dong et  al. 2016b). Thus, histologic sec-
tioning is normally adopted in MSI for roots and stems 
of plants (Li et al. 2016a), whereas imprinting strategies 
are preferred for leaves and petals due to fluctuating sur-
faces, wax-layer protection, and their inability to be sliced 
(Wu et al. 2020; Qin et al. 2021).

Recently, spatially resolved metabolomics, which inte-
grates MSI and metabolomics methods, has been pro-
posed for accurate determination of types, contents, and 
spatial differentiation of primary and secondary metabo-
lites within plant tissues (Sumner et al. 2011; Etalo et al. 
2015; Dong et  al. 2016a). This integrated method has 
been applied in various emerging applications, such as 
precise localization of metabolites, biosynthesis and 
translocation pathways of functional metabolites, and 
functional gene verification. Specifically, Li et  al. used 
MADLI-MSI to visualize the tissue-specific distribution 
of free flavonoids, flavonoid glycosides, and saponins, 
which provided deep insights into their biosynthetic 
pathway in legumes (Li et  al. 2014). Germination and 
maturation are two highly active metabolic stages in 
seed growth and development. Bhandari et al. found that 
spermidine and cyclic spermidine conjugate can move 
from the hypocotyl to the young root of oilseed rape 
during seed germination, facilitating an understanding 
of the dynamic changes of plant metabolites at differ-
ent development stages (Bhandari et  al. 2015). Further-
more, organ- and tissue-specific distributions of various 
metabolites (e.g., flavonoid glycosides, biflavonoids, gink-
golides, and phenolic lipids) can be visualized in the root, 
young stem, and leaf of ginkgo (Li et  al. 2018a). Dong 
et al. used the integrated LC-MS and MSI to visualize the 
steroidal glycoalkaloid (Villas-Bôas et  al. 2007) pathway 

in wild-type and GAME25 silenced-construct tomato 
fruits, revealing accurate gene-metabolite relationships 
and novel gene-associated metabolites (Dong et al. 2020). 
Stopka et al. utilized an optical fiber-based laser ablation 
electrospray ionization mass spectrometry (f-LAESI-MS) 
technique to analyze individual Egeria densa leaf blade 
cells, revealing the metabolic differences between differ-
ent cell types (Stopka et al. 2018).

However, despite its advantages, spatially resolved 
metabolomics has several challenges including limited 
detection sensitivity, spatial resolution, and molecular 
identification capability. Continuing efforts have been 
made to allow sub-micrometer resolution imaging, espe-
cially for near-field based techniques (Liang et  al. 2016; 
Yin et  al. 2019; Cheng et  al. 2020). Additionally, laser 
post-ionization has recently been implemented in com-
mercial MS instruments (known as MALDI-2), which 
significantly improves ion yields for numerous lipid 
classes, vitamins, and saccharides by up to two orders of 
magnitude (Soltwisch et al. 2015; Niehaus et al. 2019).

Taken together, spatially resolved metabolomics is still 
under rapid development and will become a robust strat-
egy for plant science in near future.

MS data analysis
The handling of MS raw data is now a mature technique 
for untargeted metabolomics. Several review papers have 
summarized the characteristics of available software for 
metabolomic data processing, metabolite annotation, 
statistics, and data interpretation, as well as the level of 
programing skills required to exploit their basic func-
tions (Perez de Souza et  al. 2017; Tsugawa 2018; Chal-
eckis et al. 2019; Misra 2021). In the subsection, we will 
describe the advances of MS data analysis.

MS data pre‑ or post‑processing
After MS-based metabolomic data acquisition (Fig.  4), 
and MS data format conversion to the NetCDF, mzXML, 
or mzML standardized file formats, the metabolomics 
datasets will be processed by different computational 
solutions. Until now, many powerful tools have been 
reported to facilitate mass spectral data pre- and post-
processing, such as AMDIS (Stein 1999), MetaboliteDe-
tector (Hiller et  al. 2009), MET-COFEA (Zhang et  al. 
2014), MetaboQC (Leonid Brodsky 2010), xMSanalyzer 
(Uppal et  al. 2013), TracMass 2(Tengstrand et al. 2014), 
DecoMetDIA (Yin et  al. 2019a), MET-XAlign (Lommen 
2009), Normalyzer (Chawade et  al. 2014), TargetSearch 
(Cuadros-Inostroza et al. 2009), and NOREVA (Fu et al. 
2022). They have basic functions for GC-MS or LC-MS 
data processing, including spectral deconvolution, base-
line correction, peak picking, peak annotation, align-
ment, and normalization (Tsugawa 2018). However, 
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XCMS (Smith et al. 2006), Mzmine2 (Pluskal et al. 2010), 
OpenMS (Rost et al. 2016), and MS-DIAL (Tsugawa et al. 
2015) have been widely used for different metabolomics 
datasets, which works based on almost similar principles. 
MS-DIAL, OpenSWATH (Rost et al. 2014), and MetDIA 
(Li et al. 2016b) are specifically used to deconvolulate the 
MS/MS spectra for comprehensive DIA data. Addition-
ally, AMDIS is widely used for GC-MS based metabo-
lomics datasets (Stein 1999). There are still several 
challenges in MS data processing with high false positives 
that are attributed to background noise, contamination, 
and in-source fragmentation. For example, CAMERA 
can perform better peak picking based on several param-
eters (Kuhl et al. 2012), and in-source fragmentation can 
be obtained both by CAMERA or RAMClust (Broeckling 
et  al. 2014). CAMERA and other open-source software 
tools can cluster mass features belonging to the same 
metabolite, which is an important step aiming for reduc-
ing data redundancy and facilitating further statistical 
analyse and metabolite annotation (Broeckling et al. 2014; 
Uppal et al. 2017). In addition, NormAE, a deep learning 
model, has been developed to remove batch effects of 
large-scale untargeted metabolomics data (Fernández-
Albert et al. 2014; Rong et al. 2020). IntCor is focused on 
drift removal and data normalization for LC-MS metabo-
lomics data (Fernández-Albert et al. 2014). SPICA is built 
to extract relevant information from noisy datasets by 
analyzing ion pairs instead of individual ions (Mak et al. 
2015). Several other software tools, such as MIA (Weindl 
et  al. 2016), ICT (Jungreuthmayer et  al. 2015), geoRge 
(Capellades et al. 2015), Massifquant (Conley et al. 2014), 
Allocator (Lisacek et  al. 2014), Corrector (Huege et  al. 
2014), and X13CMS (Huang et al. 2014), have been devel-
oped to determine, correct, visualize and analyze mass 
isotope distributions in isotope labeling experiments.

Statistical analysis
Processed MS data, which consists of high dimensional 
data matrices, can be analyzed statistically by multivari-
ate and univariate analysis. There are numerous software 
packages reported for statistical analyses of metabo-
lomic data, as well as useful pipelines to facilitate statis-
tical analysis, including MetaboLyzer (Mak et  al. 2014), 
IPM4 (Liang et  al. 2020), Pathomx (Fitzpatrick et  al., 
2014), MetabR (Ernest et  al. 2012), COVAIN (Sun  and 
Weckwerth 2012), metaP-server (Kastenmüller et  al. 
2021), OpenMS (Rost et  al. 2016), MathDAMP (Baran 
et  al. 2006) , RepExplore (Glaab and Schneider 2015), 
Metabomxtr (Nodzenski et  al. 2014). Recently, other 
more specialized tools, including LipidSuite (Mohamed 
and Hill 2021), MSEA (Xia and Wishart 2010), MPA-
RF (Huang et  al. 2013), and probabilistic principal 
component analysis (PPCA) have been developed 

(Nyamundanda et al. 2010). Specifically, LipidSuite offers 
a step-by-step workflow for MS data processing, dif-
ferential analysis and enrichment analysis of lipidomics 
data (Mohamed and Hill 2021). MSEA offers three dif-
ferent enrichment analyses for metabolomic data (Xia 
and Wishart 2010). PPCA addresses some of the limi-
tations of PCA, and probabilistic principal component 
and covariates analysis provides a flexible approach to 
jointly model metabolomic data and additional covariate 
information (Nyamundanda et  al. 2010). MPA-RF helps 
to identify the informative biomarkers in complex meta-
bolic datasets (Huang et  al. 2013). Subpathway-GM is a 
method for pathway analysis that integrates information 
from genes and metabolites, as well as their positions and 
cascade regions within the given pathway (Li et al. 2013).

Metabolite annotation
Accurate metabolite annotation is very vital for data 
interpretation. But it is still considered as the most chal-
lenging step for MS-based metabolomics study, which 
largely depends on retention time, accurate mass, mass 
spectra, MS/MS fragmentation pattern, and other sam-
ple-related information. The guide for metabolite anno-
tation by current MS-based cheminformatics is reviewed 
by Tsugawa et  al. (Tsugawa 2018). As a guideline for 
annotation, the Metabolomics Standards Initiative has 
recommended four confidence levels: from level 1 to level 
4 (Sumner et  al. 2007), and metabolites identified using 
authentic standards compounds are considered as level 
1. Once a metabolite is identified, its MS/MS spectra can 
be deposited in databases. Therefore, it is important to 
establish a spectral database covering accurate mass with 
retention time using authentic standards compounds 
for leveraging metabolite annotation, although genera-
tion of spectral library will be expensive with the high 
cost of commercial standard compounds. MS/MS spec-
tra are currently the starting point for most of MS-based 
metabolite annotation approaches to search through 
different experimentally derived databases, including 
experimentally derived databases, including NIST, MET-
LIN, MoNA, MassBank, European MassBank, mzCloud, 
GMD, GNPS, ReSpect and LipidMaps, which are covered 
in other comprehensive review papers about a complete 
databases (Vinaixa et al. 2016; Perez de Souza et al. 2017; 
Blazenovic et al. 2018). Some in silico generated MS/MS 
spectra are also included in popular compound databases 
for metabolite annotation, such as PubChem, Chemspi-
der, HMDB, KEGG, ChEBI, ChemBank, and universal 
natural product database (UNPD) (Wang et  al. 2016; 
Blazenovic et al. 2018). Accordingly, MetaboSearch (Fer-
nandez-Fuentes et al. 2012), PUTMEDID-LCMS (Brown 
et al. 2011), MFSearcher (Sakurai et al. 2013), MetAssign 
(Daly et  al. 2014), MS-FINDER (Tsugawa et  al. 2016), 
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HR3 (Lommen 2014), SIRIUS (Böcker et  al. 2009), and 
MS2Analyzer (Ma et al. 2014b), are developed for inter-
rogating and matching unannotated mass spectra from 
those databases. Recently, METLIN, as the largest indi-
vidual collection of MS/MS experimental data acquired 
in multiple collision energies, has been directly inte-
grated with XCMS online processing platform (Guijas 
et al. 2018b).

One of the major obstacles for proper MS-based 
metabolite annotation is the limited number of charac-
terized authentic standards for the majority of the dif-
ferent compounds derived from plants. Thus, several 
alternatives have been developed to support metabo-
lite annotation, some large databases expand the cover-
age by including in silico generated MS/MS spectra of 
known compounds based on machine learning or quan-
tum mechanics calculations. MetFrag (Ruttkies et  al. 
2016), MolFind (Menikarachchi et  al. 2012), CFM-ID 
(Allen et  al. 2014), MAGMa (Ridder et  al. 2014), CSI: 
FingerID (Dührkop et al. 2015), MetFusion (Gerlich and 
Neumann 2013), and MetFrag (Ruttkies et al. 2016), can 
be used to predict molecular properties of unknown 
compounds by their tandem mass spectra based on the 
integration of machine learning model and known mass 
spectra. CANOPUS uses a deep neural network to pre-
dict 2,497 compound classes from fragmentation spectra, 
including all biologically relevant classes (Dührkop et al. 
2020). DLEMMA is a valuable tool and is analogous to 
DNA arrays in that it enables the identification and rela-
tive quantification of differential metabolites in a single 
sample (Feldberg et  al. 2009). ChemDistiller combines 
automated large-scale annotation of metabolites using 
tandem MS data with a compiled database containing 
tens of millions of compounds with pre-calculated ‘fin-
gerprints’ and fragmentation patterns (Laponogov et  al. 
2018). One issue to note is that, molecular networking 
has been widely used in the last half decade, which relies 
on the idea that structurally related compounds have 
similar MS/MS fragmentation, and thus generate spectra 
similarity networks (Yang et  al. 2013b). The GNPS pro-
vides an open-source platform for sharing mass spectral 
data and data analysis based on molecular networking 
(Wang et  al. 2016). As shown in Table  2, we summa-
rized the function characterization of the advanced 
molecular networking tools for metabolite annotation of 
LC-MS data, such as IIMN (Schmid et  al. 2021), NetID 
(Chen et al. 2021), FBMN (Nothias et al. 2020), SIRIUS 4 
(Duhrkop et al. 2019), NAP (da Silva et al. 2018), MSHub/
GNPS (Aksenov et al. 2021), MetDNA (Shen et al. 2019), 
Metwork, MolNetEnhancer (Ernst et  al. 2019), Qemis-
tree (Tripathi et  al. 2021), DEREPLICATOR+ (Mohim-
ani et al. 2018), DEREPLICATOR (Mohimani et al. 2017), 
ISDB (Allard et al. 2016), MS2LDA (van Der Hooft et al. 

2016) etc. To date, the strategy based on molecular net-
working has shown outstanding potential to increase the 
number of signals assigned to a putative chemical struc-
ture in MS based metabolomics, which has been com-
prehensively reviewed (Fox Ramos et al. 2019; Perez De 
Souza et al. 2020; Beniddir et al. 2021).

Metabolomics applications to plant research
Gene function characterization and metabolic pathway 
exploration
Plant endogenous metabolites are indispensable for 
human being and the plant itself. Hence, comparative 
metabolomics has been very powerful to highlight the 
metabolic differences in different plant species (Wang 
et  al. 2014a) and in the cross-comparison of metabolite 
quantitative trait loci (mQTL) in populations of the same 
plant species (Wen et al. 2014). Metabolomics also allows 
the determination of metabolites in plants with vital roles 
in tolerance to abiotic or resistance to biotic stress. Inte-
grating metabolomics with other-omics technologies is 
used to pinpoint the causal genes and further exploration 
of metabolic pathway, which becomes more and more 
important for marker-assisted breeding and metabolic 
engineering to target key pathways of plants. Previous 
studies show that multi-omics analysis using near iso-
genic lines and natural variants of a given plant could be 
used to identify new metabolites (Tsugawa et al. 2021).

Firstly, most traits of crops are polygenic, therefore, 
their genetic basis can be readily elucidated with the 
strategies of quantitative genetics. With the rapid devel-
opment of metabolomics- and genomics-related technol-
ogies, mQTL and metabolite genome-wide association 
studies (mGWAS) have been commonly used to dissect 
the genetic architectures underlying the varied metabo-
lites in plants in the last 15 years, which will generate the 
linkages or associations between chromosomal locations 
and metabolite contents. Subsequently, the candidate 
genes included within the genomic interval or adjacent 
to the associated marker loci are identified in many plant 
species with annotated genomes, which have been com-
prehensively reviewed (Fang and Luo 2019). Recently, by 
integrating comparative metabolomics and mGWAS ana-
lyse, Liang et al. identify 10 candidate genes significantly 
associated with the abundances of 37 metabolites, which 
are biomarkers related to salt stress tolerance (Liang et al. 
2021a). Chen et al. identify 26 candidate genes and vali-
date two genes involved in the flavonoid decoration path-
way of wheat kernel through wheat mGWAS study (Chen 
et al. 2020a). And numerous studies have been reported 
to characterize genes and dissect the genetics of meta-
bolic traits in other crops using a similar multi-omics 
integration approach, such as in cucumber (Shang et al. 
2014), in maize (Wen et  al. 2014; Wen et  al. 2016), in 
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tomato (Sauvage et al. 2014; Alseekh et al. 2015; Zhu et al. 
2018a), and in rice (Chen et al. 2014; Chen et al. 2016). 
We also conducted a study on integrated metabolomics, 
genomics, and other technologies to validate the function 
of several candidate genes in rice (Liu et al. 2020).

Secondly, the strategy of integrating metabolomics 
with transcriptomics also help to unveil the relationship 
between the genotype and phenotype of an organism 
and identify the function of core genes involved in spe-
cific metabolic pathways, such as proanthocyanidin bio-
synthesis in Arabidopsis thaliana (Kitamura et al. 2010), 
noscapine (Winzer et  al. 2012), tanshione biosynthesis 
in Salvia miltiorrhiza (Gao et  al. 2014), flavonoids and 
amino acids biosynthesis in Camellia sinensis L. (Huang 

et  al. 2018), anthocyanin biosynthesis in Triticum aes-
tivum L. (Wang et  al. 2021b). For example, we have 
integrated metabolomics with transcriptomics to demon-
strate the carbon metabolism and plant hormones regu-
lation in Vigna radiata during post-germination seedling 
growth (Wang et al. 2020a). Many previous studies used 
the same multi-omics strategy to reveal the metabolic 
shifts or metabolic regulation occurred during plant 
development (Rohrmann et  al. 2011; Asfaw Degu et  al. 
2014), or to understand the global metabolic responses to 
different kinds of stresses (Hirai et al. 2004; Oates et al. 
2015; Agarrwal et al. 2016).

Thirdly, the strategy of integrating metabolomics 
with proteomics has been also used to demonstrate 

Table 2  Advanced molecular networking tools for metabolite annotation of LC-MS/MS data

Tool name Function characterization Reference

IIMN A tool integrates chromatographic peak shape correlation analysis into molecular networks to connect 
and collapse different ion species of the same molecule.

(Schmid et al. 2021)

NetID An algorithm optimizes a network of mass spectrometry peak connections based on MS1 mass differ-
ences corresponding to the gain or loss of relevant chemical moieties, and MS2 spectral similarity.

(Chen et al. 2021)

Qemistree A tree-based approach for computing and representing chemical features from tandem MS-based 
metabolomics studies, which is based on the hierarchical organization of molecular fingerprints pre-
dicted from MS/MS fragmentation spectra.

(Tripathi et al. 2021)

FBMN A method that bridges popular MS data processing tools for LC-MS/MS and molecular networking 
analysis on GNPS, enabling the characterization of isomers, incorporation of relative quantification, and 
integration of ion mobility data.

(Nothias et al. 2020)

CliqueMS A computational tool that annotates redundant MS1 features by constructing a similarity network 
between coelution profiles and a calculated natural frequency of adduct formation observed in real 
complex biological samples and pure compounds, which produces accurate annotations for a single 
MS1 spectrum.

(Senan et al. 2019)

MetWork An annotation propagation tool, which based on MS2 data, organized in molecular network, a collabo-
rative library of reactions, and a MS2 spectra prediction module.

(Beauxis et al. 2019)

MetDNA A metabolic reaction network-based recursive algorithm that characterizes initial seed metabolites with 
MS2 spectra, and utilizes their experimental MS2 spectra as surrogate spectra to annotate their reaction-
paired neighbor metabolites.

(Shen et al. 2019)

SIRIUS 4 A tool integrates high-resolution isotope pattern analysis and fragmentation trees to provide an assess-
ment of molecular structures from MS2 data for large datasets and propagation of annotation through 
molecular networks.

(Duhrkop et al. 2019)

MolNetEnhancer A software package that unites the output of several tools, including mass spectral molecular network-
ing, unsupervised substructure discovery, and in silico structure annotation to illuminate structural 
details for each fragmentation spectrum.

(Ernst et al. 2019)

DEREPLICATOR + A tool for search the entire GNPS and identifies variants of known metabolites using molecular network-
ing, which improves the identification of peptidic natural products, polyketides, terpenes, benzenoids, 
alkaloids, flavonoids, etc.

(Mohimani et al. 2018)

NAP An on-line tool that uses a combination of molecular networks, based on spectral similarity, together 
with in silico fragmentation, to enable the scientific community to strengthen their MS annotations.

(da Silva et al. 2018)

DEREPLICATOR A new dereplication algorithm that searches MS/MS spectral datasets against the database of peptidic 
natural products (PNPs), which enables high-throughput PNPs identification based on molecular 
networking.

(Mohimani et al. 2017)

MS2LDA An unsupervised method that extracts common patterns of mass fragments and neutral losses-Mass-
2Motifs from the collection of fragmentation spectra, which can be used to annotate molecules.

(van der Hooft et al. 2016)

ISDB An innovative dereplication strategy based on the combination of molecular networking with an exten-
sive in-silico MS2 fragmentation database of natural products.

(Allard et al. 2016)

GNPS An open-access knowledge base for community-wide organization and sharing of raw, processed or 
identified MS2 spectrometry data.

(Wang et al. 2016)
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the alterations in the metabolic and protein composi-
tion of a cell required to manifest phenotypic plasticity 
by plants, such as responses to perturbation of glucosi-
nolate biosynthesis (Chen et  al. 2012), and to different 
stress (Kushalappa and Gunnaiah 2013). Amiour et  al. 
have integrated metabolomics, transcriptomics, and 
proteomics to identify key steps involved in nitrogen 
metabolism in maize (Amiour et al., 2012). Recently, we 
have conducted comparative metabolomics, proteom-
ics, and transcriptomics analyses between the winter and 
spring tender shoots of a novel ever-growing tea tree, and 
observed phytohormone, amino acid and energy metabo-
lism response to winter adaptation (Dai et  al. 2021). By 
integrating metabolomics with proteomics datasets for 
banana carotenoid study, we found that increased abun-
dance of carotenogenesis-associated proteins alongside 
elevated carbohydrate accumulation contribute to high 
carotenoid content in banana pulp during its develop-
ment, implying that a multi-target approach is necessary 
in order to improve carotenoid content in banana (Heng 
et al. 2019).

Safety assessment of genetic modified (GM) plants
Metabolic engineering is the use of particular metabo-
lites for plant improvement strategy, that involves the 
transgenic expression and RNAi silencing of targeted 
genes encoding enzymes involved in the specific meta-
bolic pathway to modulate the metabolite biosynthesis. 
However, beyond the intended changes, there are certain 
unintended changes that occur in these plants. There-
fore, untargeted metabolomics technology has long been 
suggested and applied for safety assessment of the GM 
plants (Cellini et al. 2004; Heinemann et al. 2011; Stew-
art and Shepherd 2013; Guijas et  al. 2018b). Metabolic 
profiling of transgenic rice, which has a mutated anthra-
nilate synthase gene for feedback inhibition-insensitive 
synthesis of tryptophan, reveal the elevated levels of free 
tryptophan and only minor changes in levels of other 
free amino acids (Wakasa et  al. 2006). Several other 
crops such as soy (Padgette et  al. 1996), potatoes (Hell-
wege et  al. 2000), wheat (Obert et  al. 2004), and alfalfa 
(McCann et al. 2006) have also been analyzed at the met-
abolic level to establish substantial equivalence between 
their GM and non-GM counterparts. Knock-out mutants 
of the phenylalanine ammonia lyase involved in the phe-
nylpropanoid pathway in Arabidopsis accumulate higher 
levels of phenylalanine and also show perturbed metabo-
lisms of other aromatic amino acids (Rohde et al. 2004). 
Recently, the unintended metabolic consequences of the 
BAR gene, which encodes a bacterial acetyltransferase 
that has N-acetylation activity towards the herbicidal 
amino acid phosphinothricin, expressed in transgenic 
crops is another illustration of the utility of untargeted 

metabolomics in assessing new genetically engineered 
traits in crops (Christ et al. 2017). Until now, numerous 
studies have illustrated the utility of untargeted metabo-
lomics to improve GM crop safety assessment (Catchpole 
et al. 2005; Shepherd et al. 2015).

Natural products chemistry
Plant natural products (NPs) represent a large family of 
diverse chemical entities with a wide variety of biological 
activities that have been found with multiple uses, nota-
bly in human and veterinary medicine and in agriculture 
(Katz and Baltz 2016). For NP discovery, the separation 
of metabolites is usually performed using GC or HPLC 
columns, and the eluants are usually analyzed directly 
by MS detection. Several MS-based databases and soft-
ware tools are now applied for NPs identification, such 
as ReSpect (Sawada et al. 2012) and GNPS (Wang et al. 
2016). Elucidation of the metabolic pathways of NPs 
would help to determine their efficacy and safety. Inte-
grating metabolomics and next-generation sequencing 
data help to elucidate the pathways of NP metabolism in 
medicinal plants. For example, the metabolic pathways of 
benzoisoquinoline and monoterpenoid indole alkaloids, 
cannabinoids, caffeine, ginsenosides, with anolides, arte-
misinin, and taxol are elucidated (Scossa et al. 2018). Fur-
thermore, the labelling approach in metabolomics such 
as 13C-based metabolomics studies, can also be applied 
for discovering novel secondary metabolism (Creek et al. 
2012; Ellis and Goodacre 2012).

Using metabolomics technology, the metabolic maps of 
many bioactive NPs have been reported, such as myrislig-
nan (Yang et al. 2017), triptonide (Hu et al. 2018), osthole 
(Zhao et  al. 2018), dehydrodiisoeugenol (Lv et  al. 2017) 
and so on. Biological activities of NPs can also be evalu-
ated and their pharmacological effects can be predicted 
by MS-based metabolomics, which has been extensively 
reviewed (Zhao et al. 2018). Furthermore, metabolomics 
has also been employed in the quality control of NPs, 
being used to monitor the variation of metabolic pro-
files among individuals, environmental alterations dur-
ing growth and harvesting, post harvesting treatment, 
extraction, and method of isolation (Salem et  al. 2020). 
Metabolomics, combined with unsupervised principal 
component analysis and supervised partial least square 
analysis/partial least square analysis with discriminant 
analysis, are the common methods used in the qual-
ity control. For example, Wang et  al. used this method 
to study the effect of location on the percentage of vari-
ous constituents of chamomile (Matricaria recutita L.) 
(Wang et al. 2004).
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Challenges and future perspectives
Over the past decade, technological advances have led to 
significant improvements for in-depth proteomics and 
metabolomics analyses and have enabled the develop-
ment of true single-cell proteomics and metabolomics 
technologies. However, despite all the progress, signifi-
cant technical challenges remain mainly due to the inher-
ent nature of the complex molecules involved. This is 
particularly true for single-cell proteomics and metabo-
lomics given the limited amounts of materials available. 
Foremost among these challenges is sample prepara-
tion. To maximize proteome or metabolome coverage, 
one must develop an efficient and unbiased solubiliza-
tion method for all cellular proteins and metabolites. 
When dealing with plant tissues, the cell wall poses an 
additional challenge in preparation of cells for FACS 
from plant tissue. In order to render the cells mobile, 
plant cells will have to be reduced to protoplasts by the 
removal cell wall through enzymatic degradation. This is 
a slow process that can, by itself, alter the composition of 
the cell’s proteome creating a highly artificial sample. A 
sufficient number of controls must be included to dem-
onstrate that the proteomics information obtained after 
this process is at all relevant to biological question being 
asked and not just a consequence of the stress introduced 
by the removal of the cell wall.

Continuous developments concerning the technical 
aspects of high throughput sampling with miniaturiza-
tion, fast and high resolution/accuracy MS with superior 
sensitivity, and machine learning-based data analysis are 
expected to push the boundaries enabling new capabili-
ties allowing for single-cell measurement of PTMs, and 
improved dynamic range ultimately leading towards 
full coverage of both proteomes and metabolomes with 
quantitative accuracy. These front-end sample processing 
developments have propelled MS to become the central 
analytical tool. An integration of post-ionization gas-
phase fractionation with advanced MS instruments is 
seeing increased use as an additional and complementary 
orthogonal separation to column chromatography. This 
development is of particular benefit to single-cell prot-
eomics (Clark et al. 2021; Brunner et al. 2022). Therefore, 
the use of IMS is expected to expand particularly for sin-
gle cell proteomics and metabolomics in future.

Further development of MSI in both proteomics and 
metabolomics is highly anticipated. In recent years, MSI 
is becoming more widely used for plant-omics as it pro-
vides molecular analysis of tissue with the spatial distri-
bution of the different analytes in the tissue sample. To 
date, MSI has been the most impactful tool for metabo-
lomic applications including single cell metabolomics. 
One advantage of MSI-MALDI is that matrix application 
and ionization are conducted directly on tissue, which is 

superior to cell isolation for metabolome integrity while 
retaining the relative localization of cells and allowing for 
assessment of the intercellular space (Korte et al. 2015). 
However, there are many challenges for MSI analysis 
that include data analysis, reproducibility, low through-
put, poor quantitative accuracy and low ionization effi-
ciency for plant peptides and proteins. Nevertheless, it is 
anticipated that further refinement and development of 
MSI platforms and associated data analysis software are 
necessary for reliable in situ analysis of proteins/peptides 
and metabolites reflecting specific plant phenotypes.

Many effective and intelligent MS analysis strategies 
with real-time instrument control and decision mak-
ing have emerged as a means for improving the quality 
of acquired spectra and maximizing confident identifi-
cation and quantitative accuracy. A recently developed 
RTS MS3 acquisition method on the Orbitrap Tribrid MS 
instrument is a good example for enhanced TMT-based 
quantitative proteomics (Erickson et al. 2019). Another is 
the use of the AcquireX intelligent data acquisition work-
flow for in-depth MSn analysis of numerous low abun-
dance metabolites in untargeted metabolomics.

Interpreting the tens of thousands of MS/MS spectra, 
including chimeric spectra from multiple co-isolated 
peptides, and translating them into biological informa-
tion is another hurdle. Automated MS/MS-based peptide 
identifications and metabolite annotations have relied 
on database search engines with statistically based scor-
ing algorithms. Thus, we expect that improved database 
search engines, particularly deep learning-based algo-
rithms will be developed for enhanced search outcome. 
In untargeted metabolomics and DIA-based proteom-
ics, spectral library databases are required for confident 
identities (Tada et al. 2019; Zhang et al. 2020a). However, 
building these reference libraries from chemical stand-
ards or DDA of peptide fractions is limited in size relative 
to known chemicals or initial DDA identities. Recently, 
development of algorithms predicting in silico MS/MS 
spectra has shown great promise (McEachran et al. 2019; 
Chao et  al. 2020) for DIA in-depth proteome (Hu et  al. 
2016). Thus, we anticipate the current search engines and 
algorithms of in silico MS/MS spectra annotation will be 
further improved.

Perhaps the biggest challenge for future proteomics 
and metabolomics is to interrogate the acquired data 
with multi-omics datasets in system biology studies. We 
have reached a stage where high-throughput sequencing 
and MS cover all the large-scale disciplines we can define: 
genomics, transcriptomics, proteomics, metabolomics, 
and lipidomics. With this amount of information, a sys-
tematic multi-omics integration (MOI) of the large data 
sets from all those techniques remains a need (Gomez-
Cabrero et  al. 2014). Despite the unique challenges in 
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plants, three levels of MOI were summarized covering 
element-based, pathway-based and mathematical-based 
integration (Jamil et al. 2020). PaintOmics, a web server 
for the integrated analysis and visualization of multiple 
omic data has been continually developed in the past 
decade, allowing researchers for interactive exploration 
of their multi-omics datasets including transcriptom-
ics, proteomics and metabolomics (Hernandez-de-Diego 
et  al. 2018; Liu et  al. 2022). Since machine learning has 
been demonstrated to aid in integrating the multi-omics 
platforms for plant-environment interaction (Moore et al. 
2019) and precision breeding (Weckwerth et al. 2020), we 
anticipate the development of effective machine learning 
algorithms will be one of the focuses in facilitating plant 
MOI research.
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